scholarly journals Critical Frequencies of Composite Cylindrical Shells

2020 ◽  
Vol 25 (1) ◽  
pp. 79-87
Author(s):  
K. Renji ◽  
S. Josephine Kelvina Florence

The sound radiation characteristics of a structure depend on its critical frequency. The expression for theoretically estimating the critical frequency of a composite cylindrical shell has not yet been reported. Thus, the practice is to use the expression for the composite panel for determining the critical frequency of a composite shell. In this work, critical frequencies of composite shells are investigated. As the critical frequency depends on the speed of the bending wave, an expression for the speed of the bending wave is first derived. It is seen that the curvature causes an increase in the speed of the bending wave and the orthotropic nature of the cylinder reduces the speed. An expression for the critical frequency of a composite cylindrical shell is then derived. The curvature causes a reduction in the critical frequency and the influence is significant in acoustically thick cylinders. Hence, the critical frequencies of such cylinders cannot be determined by using the expression for the panels. Effects of transverse shear deformation on the speed of the bending wave as well as the critical frequency are then investigated. Transverse shear deformation causes both reduction in the speed of the bending wave and an increase in the critical frequency. The orthotropic nature of the cylindrical shell increases the critical frequency further. The critical frequency of a typical composite cylinder is determined through a numerical simulation and the results are in agreement with the results obtained using the expressions derived. The critical frequency of a typical composite cylinder obtained through an experiment is presented. With this work, expressions for theoretically estimating the speeds of the bending waves and critical frequencies are derived for a composite cylindrical shell considering transverse shear deformation.

2020 ◽  
Vol 26 (17-18) ◽  
pp. 1503-1513
Author(s):  
K Renji

In this work, expressions for estimating the modal density, speed of the bending wave, critical frequency and coincidence frequency of panels are derived considering orthotropic properties of the face sheets, transverse shear deformation and the rotary inertia. Presence of rotary inertia results in an increase in the modal density and a reduction in the speed of the bending waves. The influence is significant at higher frequencies. The critical and coincidence frequencies increase due to rotary inertia. Results for a typical equipment panel of spacecraft are presented and they show the need for incorporating rotary inertia while determining these parameters.


2012 ◽  
Vol 28 (2) ◽  
pp. 391-399 ◽  
Author(s):  
H.-L. Dai ◽  
H.-Y. Zheng

AbstractIn this paper, based on the viscoelastic theory, the creep buckling and post-buckling behaviors of a viscoelastic functionally graded material (FGM) cylindrical shell with initial deflection subjected to a uniform in-plane load are investigated. The material properties of the viscoelastic FGM cylindrical shell are assumed to vary through the structural thickness according to a power law distribution of the volume fraction of constituent materials and Poisson's ratio is assumed as a constant. Considering the transverse shear deformation and geometric nonlinearity, the constitutive relation of the viscoelastic FGM cylindrical shell is established. By means of the Newton-Newmark method and the Boltzmann superposition principle, the problem for the creep buckling and post-buckling of the FGM cylindrical shell is solved. The numerical results reveal that the transverse shear deformation, volume fraction and geometric parameters have significant effects on the creep buckling and post-buckling of the viscoelastic FGM cylindrical shell.


1967 ◽  
Vol 34 (3) ◽  
pp. 659-666 ◽  
Author(s):  
S. T. Gulati ◽  
F. Essenburg

The solution of the problem of the generally anisotropic axisymmetric circular cylindrical shell is obtained employing a recent shell theory given by Naghdi. The practical importance of the presence of the circumferential displacement components and the twisting couple arising due to the presence of anisotropy, as well as the significance of the inclusion of the coupled effects of transverse shear deformation and anisotropy, are illustrated by a specific example.


Sign in / Sign up

Export Citation Format

Share Document