Limit Dependences in Stability Calculations With Account for Physical Nonlinearity

2016 ◽  
Vol 33 (2) ◽  
pp. 157-160
Author(s):  
J. Rutman ◽  
V. Ulitin

AbstractStability of bars, plates, shells, and other thin-walled structures in conditions of small physical nonlinearity is considered, when stresses exceed the proportionality limit, the amount of deformations being limited. Shanley's concept is used. The critical state is determined by means of some limit dependences. In a large number of cases, when creating efficient highly-stressed constructions, limited plastic deformations are allowed in them. When analysing stability in the critical state, the calculated stresses turn out to exceed the proportionality limit and the Young's modulus of elasticity turns out to be greater than the tangent modulus corresponding to the calculated stress on the diagram “deformation-stress”. The objective of this work is to show that stability calculation beyond the proportionality limit is reduced to the analysis of some limit dependences as well as to develop a general solution algorithm for similar problems.

2018 ◽  
Vol 931 ◽  
pp. 188-195
Author(s):  
Alexey A. Reshetnikov ◽  
Vladislav Y. Kornet ◽  
Darya A. Leonova

This article presents a comparative analysis of methods for calculating cold-formed steel structures, or light steel thin-walled structures (LSTS), as they are called in Russia, according to domestic and foreign norms. For comparison, the calculation provisions for SR 260.1325800.2016 "Steel thin-walled constructions from cold-bent galvanized sheets" and AISI (American Institute of Ferrous Metallurgy) were taken. For clarity of the solution algorithm, a block diagram for each method is presented. Specific features of calculating the C-shaped cross-section for bending by both methods are indicated [1].


2020 ◽  
Vol 17 ◽  
pp. 00199
Author(s):  
Arsen Dzhabrailov ◽  
Anatoly Nikolaev ◽  
Natalya Gureeva

The article describes an algorithm for calculating an axisymmetrically loaded shell structure with a branching meridian, taking into account elastic-plastic deformations when loading based on the deformation theory of plasticity without assuming that the material is incompressible during plastic deformations. The correct relations which determine the static conjugation conditions of several revolution shells in the joint assembly are used. A comparative analysis of finite element solutions is presented for various options plasticity matrix development at the loading stage.


2018 ◽  
Vol 762 (8) ◽  
pp. 36-39 ◽  
Author(s):  
B.G. BULATOV ◽  
◽  
R.I. SHIGAPOV ◽  
M.A. IVLEV ◽  
I.V. NEDOSEKO ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 592
Author(s):  
Feng Yue ◽  
Ziyan Wu

The fracture mechanical behaviour of thin-walled structures with cracks is highly significant for structural strength design, safety and reliability analysis, and defect evaluation. In this study, the effects of various factors on the fracture parameters, crack initiation angles and plastic zones of thin-walled cylindrical shells with cracks are investigated. First, based on the J-integral and displacement extrapolation methods, the stress intensity factors of thin-walled cylindrical shells with circumferential cracks and compound cracks are studied using linear elastic fracture mechanics, respectively. Second, based on the theory of maximum circumferential tensile stress of compound cracks, the number of singular elements at a crack tip is varied to determine the node of the element corresponding to the maximum circumferential tensile stress, and the initiation angle for a compound crack is predicted. Third, based on the J-integral theory, the size of the plastic zone and J-integral of a thin-walled cylindrical shell with a circumferential crack are analysed, using elastic-plastic fracture mechanics. The results show that the stress in front of a crack tip does not increase after reaching the yield strength and enters the stage of plastic development, and the predicted initiation angle of an oblique crack mainly depends on its original inclination angle. The conclusions have theoretical and engineering significance for the selection of the fracture criteria and determination of the failure modes of thin-walled structures with cracks.


Sign in / Sign up

Export Citation Format

Share Document