scholarly journals On the errors involved in ice-thickness estimates I: ground-penetrating radar measurement errors

2016 ◽  
Vol 62 (236) ◽  
pp. 1008-1020 ◽  
Author(s):  
J.J. LAPAZARAN ◽  
J. OTERO ◽  
A. MARTÍN-ESPAÑOL ◽  
F.J. NAVARRO

ABSTRACTThis is the first (Paper I) of three companion papers focused respectively, on the estimates of the errors in ice thickness retrieved from pulsed ground-penetrating radar (GPR) data, on how to estimate the errors at the grid points of an ice-thickness DEM, and on how the latter errors, plus the boundary delineation errors, affect the ice-volume estimates. We here present a comprehensive analysis of the various errors involved in the computation of ice thickness from pulsed GPR data, assuming they have been properly migrated. We split the ice-thickness error into independent components that can be estimated separately. We consider, among others, the effects of the errors in radio-wave velocity and timing. A novel aspect is the estimate of the error in thickness due to the uncertainty in horizontal positioning of the GPR measurements, based on the local thickness gradient. Another novel contribution is the estimate of the horizontal positioning error of the GPR measurements due to the velocity of the GPR system while profiling, and the periods of GPS refreshing and GPR triggering. Their effects are particularly important for airborne profiling. We illustrate our methodology through a case study of Werenskioldbreen, Svalbard.

2021 ◽  
pp. 1-19
Author(s):  
Melchior Grab ◽  
Enrico Mattea ◽  
Andreas Bauder ◽  
Matthias Huss ◽  
Lasse Rabenstein ◽  
...  

Abstract Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform, we measured the ice thickness of all large and most medium-sized glaciers in the Swiss Alps during the years 2016–20. Most of these had either never or only partially been surveyed before. With this new dataset, 251 glaciers – making up 81% of the glacierized area – are now covered by GPR surveys. For obtaining a comprehensive estimate of the overall glacier ice volume, ice thickness distribution and glacier bed topography, we combined this large amount of data with two independent modeling algorithms. This resulted in new maps of the glacier bed topography with unprecedented accuracy. The total glacier volume in the Swiss Alps was determined to be 58.7 ± 2.5 km3 in the year 2016. By projecting these results based on mass-balance data, we estimated a total ice volume of 52.9 ± 2.7 km3 for the year 2020. Data and modeling results are accessible in the form of the SwissGlacierThickness-R2020 data package.


2016 ◽  
Vol 62 (236) ◽  
pp. 1030-1036 ◽  
Author(s):  
A. MARTÍN-ESPAÑOL ◽  
J. J. LAPAZARAN ◽  
J. OTERO ◽  
F. J. NAVARRO

ABSTRACTThis paper is the third (Paper III) in a set of studies of the errors involved in the estimate of ice thickness and ice volume. Here we present a methodology to estimate the error in the calculation of the volume of an ice mass from an ice-thickness DEM. We consider the two main error sources: the ice-thickness error at each DEM grid point and the uncertainty in the boundary delineation. To accurately estimate the volume error due to the error in thickness of the DEM, it is crucial to determine the degree of correlation among the ice-thickness errors at the grid points. We find that the two-dimensional integral range, which represents the equivalent area of influence of each independent value, allows estimation of the equivalent number of independent values of error within the DEM. Hence, it provides an easy way to obtain the volume error resulting from the uncertainty in ice thickness of a DEM. We show that the volume error arising from the uncertainty in boundary delineation, often neglected in the literature, can be of the same order of magnitude as the volume error resulting from ice-thickness errors. We illustrate our methodology through the case study of Werenskioldbreen, Svalbard.


2014 ◽  
Vol 46 (2) ◽  
pp. 394-406 ◽  
Author(s):  
F. J. Navarro ◽  
A. Martín-Español ◽  
J. J. Lapazaran ◽  
M. Grabiec ◽  
J. Otero ◽  
...  

2016 ◽  
Vol 42 (2) ◽  
pp. 399 ◽  
Author(s):  
F. J. Navarro ◽  
J. Lapazaran ◽  
A. Martín-Español ◽  
J. Otero

During the period 1999-2014, the Group of Numerical Simulation in Sciences and Engineering of Universidad Politécnica de Madrid carried out many ground-penetrating radar campaigns in Svalbard, aimed to the study of glacier ice-thickness and the physical properties of glacier ice. The regions covered were Nordenskiöld Land, Wedel Jarlsberg Land, Sabine Land and Nordaustlandet. We here present a review of these works, focused on the aspects related to the estimate of the volume of individual glaciers and its extrapolation to the entire set of Svalbard glaciers, for which the authors estimate a total volume of 6700±835 km3, o 17±2 mm in sea-level equivalent.


2012 ◽  
Vol 58 (207) ◽  
pp. 99-109 ◽  
Author(s):  
Seth Campbell ◽  
Karl Kreutz ◽  
Erich Osterberg ◽  
Steven Arcone ◽  
Cameron Wake ◽  
...  

AbstractWe used ground-penetrating radar (GPR), GPS and glaciochemistry to evaluate melt regimes and ice depths, important variables for mass-balance and ice-volume studies, of Upper Yentna Glacier, Upper Kahiltna Glacier and the Mount Hunter ice divide, Alaska. We show the wet, percolation and dry snow zones located below ~2700ma.s.l., at ~2700 to 3900ma.s.l. and above 3900ma.s.l., respectively. We successfully imaged glacier ice depths upwards of 480 m using 40-100 MHz GPR frequencies. This depth is nearly double previous depth measurements reached using mid-frequency GPR systems on temperate glaciers. Few Holocene-length climate records are available in Alaska, hence we also assess stratigraphy and flow dynamics at each study site as a potential ice-core location. Ice layers in shallow firn cores and attenuated glaciochemical signals or lacking strata in GPR profiles collected on Upper Yentna Glacier suggest that regions below 2800ma.s.l. are inappropriate for paleoclimate studies because of chemical diffusion, through melt. Flow complexities on Kahiltna Glacier preclude ice-core climate studies. Minimal signs of melt or deformation, and depth-age model estimates suggesting ~4815 years of ice on the Mount Hunter ice divide (3912ma.s.l.) make it a suitable Holocene-age ice-core location.


Sign in / Sign up

Export Citation Format

Share Document