THE COMPLEXITY OF INDEX SETS OF CLASSES OF COMPUTABLY ENUMERABLE EQUIVALENCE RELATIONS

2016 ◽  
Vol 81 (4) ◽  
pp. 1375-1395 ◽  
Author(s):  
URI ANDREWS ◽  
ANDREA SORBI

AbstractLet$ \le _c $be computable the reducibility on computably enumerable equivalence relations (or ceers). We show that for every ceerRwith infinitely many equivalence classes, the index sets$\left\{ {i:R_i \le _c R} \right\}$(withRnonuniversal),$\left\{ {i:R_i \ge _c R} \right\}$, and$\left\{ {i:R_i \equiv _c R} \right\}$are${\rm{\Sigma }}_3^0$complete, whereas in caseRhas only finitely many equivalence classes, we have that$\left\{ {i:R_i \le _c R} \right\}$is${\rm{\Pi }}_2^0$complete, and$\left\{ {i:R \ge _c R} \right\}$(withRhaving at least two distinct equivalence classes) is${\rm{\Sigma }}_2^0$complete. Next, solving an open problem from [1], we prove that the index set of the effectively inseparable ceers is${\rm{\Pi }}_4^0$complete. Finally, we prove that the 1-reducibility preordering on c.e. sets is a${\rm{\Sigma }}_3^0$complete preordering relation, a fact that is used to show that the preordering relation$ \le _c $on ceers is a${\rm{\Sigma }}_3^0$complete preordering relation.

2019 ◽  
Vol 85 (1) ◽  
pp. 61-86 ◽  
Author(s):  
URI ANDREWS ◽  
SERIKZHAN A. BADAEV

AbstractWe examine how degrees of computably enumerable equivalence relations (ceers) under computable reduction break down into isomorphism classes. Two ceers are isomorphic if there is a computable permutation of ω which reduces one to the other. As a method of focusing on nontrivial differences in isomorphism classes, we give special attention to weakly precomplete ceers. For any degree, we consider the number of isomorphism types contained in the degree and the number of isomorphism types of weakly precomplete ceers contained in the degree. We show that the number of isomorphism types must be 1 or ω, and it is 1 if and only if the ceer is self-full and has no computable classes. On the other hand, we show that the number of isomorphism types of weakly precomplete ceers contained in the degree can be any member of $[0,\omega ]$. In fact, for any $n \in [0,\omega ]$, there is a degree d and weakly precomplete ceers ${E_1}, \ldots ,{E_n}$ in d so that any ceer R in d is isomorphic to ${E_i} \oplus D$ for some $i \le n$ and D a ceer with domain either finite or ω comprised of finitely many computable classes. Thus, up to a trivial equivalence, the degree d splits into exactly n classes.We conclude by answering some lingering open questions from the literature: Gao and Gerdes [11] define the collection of essentially FC ceers to be those which are reducible to a ceer all of whose classes are finite. They show that the index set of essentially FC ceers is ${\rm{\Pi }}_3^0$-hard, though the definition is ${\rm{\Sigma }}_4^0$. We close the gap by showing that the index set is ${\rm{\Sigma }}_4^0$-complete. They also use index sets to show that there is a ceer all of whose classes are computable, but which is not essentially FC, and they ask for an explicit construction, which we provide.Andrews and Sorbi [4] examined strong minimal covers of downwards-closed sets of degrees of ceers. We show that if $\left( {{E_i}} \right)$ is a uniform c.e. sequence of non universal ceers, then $\left\{ {{ \oplus _{i \le j}}{E_i}|j \in \omega } \right\}$ has infinitely many incomparable strong minimal covers, which we use to answer some open questions from [4].Lastly, we show that there exists an infinite antichain of weakly precomplete ceers.


2014 ◽  
Vol 79 (01) ◽  
pp. 60-88 ◽  
Author(s):  
URI ANDREWS ◽  
STEFFEN LEMPP ◽  
JOSEPH S. MILLER ◽  
KENG MENG NG ◽  
LUCA SAN MAURO ◽  
...  

Abstract We study computably enumerable equivalence relations (ceers), under the reducibility $R \le S$ if there exists a computable function f such that $x\,R\,y$ if and only if $f\left( x \right)\,\,S\,f\left( y \right)$ , for every $x,y$ . We show that the degrees of ceers under the equivalence relation generated by $\le$ form a bounded poset that is neither a lower semilattice, nor an upper semilattice, and its first-order theory is undecidable. We then study the universal ceers. We show that 1) the uniformly effectively inseparable ceers are universal, but there are effectively inseparable ceers that are not universal; 2) a ceer R is universal if and only if $R\prime \le R$ , where $R\prime$ denotes the halting jump operator introduced by Gao and Gerdes (answering an open question of Gao and Gerdes); and 3) both the index set of the universal ceers and the index set of the uniformly effectively inseparable ceers are ${\rm{\Sigma }}_3^0$ -complete (the former answering an open question of Gao and Gerdes).


1997 ◽  
Vol 3 (3) ◽  
pp. 329-346 ◽  
Author(s):  
Greg Hjorth ◽  
Alexander S. Kechris

We announce two new dichotomy theorems for Borel equivalence relations, and present the results in context by giving an overview of related recent developments.§1. Introduction. For X a Polish (i.e., separable, completely metrizable) space and E a Borel equivalence relation on X, a (complete) classification of X up to E-equivalence consists of finding a set of invariants I and a map c : X → I such that xEy ⇔ c(x) = c(y). To be of any value we would expect I and c to be “explicit” or “definable”. The theory of Borel equivalence relations investigates the nature of possible invariants and provides a hierarchy of notions of classification.The following partial (pre-)ordering is fundamental in organizing this study. Given equivalence relations E and F on X and Y, resp., we say that E can be Borel reduced to F, in symbolsif there is a Borel map f : X → Y with xEy ⇔ f(x)Ff(y). Then if is an embedding of X/E into Y/F, which is “Borel” (in the sense that it has a Borel lifting).Intuitively, E ≤BF might be interpreted in any one of the following ways:(i) The classi.cation problem for E is simpler than (or can be reduced to) that of F: any invariants for F work as well for E (after composing by an f as above).(ii) One can classify E by using as invariants F-equivalence classes.(iii) The quotient space X/E has “Borel cardinality” less than or equal to that of Y/F, in the sense that there is a “Borel” embedding of X/E into Y/F.


2017 ◽  
Vol 82 (3) ◽  
pp. 893-930 ◽  
Author(s):  
WILLIAM CHAN

AbstractThe following will be shown: Let I be a σ-ideal on a Polish space X so that the associated forcing of I+${\bf{\Delta }}_1^1$ sets ordered by ⊆ is a proper forcing. Let E be a ${\bf{\Sigma }}_1^1$ or a ${\bf{\Pi }}_1^1$ equivalence relation on X with all equivalence classes ${\bf{\Delta }}_1^1$. If for all $z \in {H_{{{\left( {{2^{{\aleph _0}}}} \right)}^ + }}}$, z♯ exists, then there exists an I+${\bf{\Delta }}_1^1$ set C ⊆ X such that E ↾ C is a ${\bf{\Delta }}_1^1$ equivalence relation.


2014 ◽  
Vol 79 (3) ◽  
pp. 908-927 ◽  
Author(s):  
ACHILLES A. BEROS

AbstractWe consider the arithmetic complexity of index sets of uniformly computably enumerable families learnable under different learning criteria. We determine the exact complexity of these sets for the standard notions of finite learning, learning in the limit, behaviorally correct learning and anomalous learning in the limit. In proving the ${\rm{\Sigma }}_5^0$-completeness result for behaviorally correct learning we prove a result of independent interest; if a uniformly computably enumerable family is not learnable, then for any computable learner there is a ${\rm{\Delta }}_2^0$ enumeration witnessing failure.


2014 ◽  
Vol 79 (2) ◽  
pp. 496-525 ◽  
Author(s):  
SAMUEL R. BUSS ◽  
LESZEK ALEKSANDER KOŁODZIEJCZYK ◽  
NEIL THAPEN

AbstractWe study the long-standing open problem of giving $\forall {\rm{\Sigma }}_1^b$ separations for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek’s theories for approximate counting and their subtheories. We show that the $\forall {\rm{\Sigma }}_1^b$ Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FPNP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of $T_2^1$ augmented with the surjective weak pigeonhole principle for polynomial time functions.


2018 ◽  
Vol 83 (1) ◽  
pp. 326-348 ◽  
Author(s):  
RUSSELL MILLER ◽  
BJORN POONEN ◽  
HANS SCHOUTENS ◽  
ALEXANDRA SHLAPENTOKH

AbstractFried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and its partially defined inverse (restricted to the categories of countable graphs and countable fields) are computable functors.


1970 ◽  
Vol 22 (3) ◽  
pp. 569-581 ◽  
Author(s):  
S. K. Thomason

In this paper we shall prove that every finite lattice is isomorphic to a sublattice of the degrees of unsolvability, and that every one of a certain class of finite lattices is isomorphic to an initial segment of degrees.Acknowledgment. I am grateful to Ralph McKenzie for his assistance in matters of lattice theory.1. Representation of lattices. The equivalence lattice of the set S consists of all equivalence relations on S, ordered by setting θ ≦ θ’ if for all a and b in S, a θ b ⇒ a θ’ b. The least upper bound and greatest lower bound in are given by the ⋃ and ⋂ operations:


2020 ◽  
Vol 32 (5) ◽  
pp. 912-968 ◽  
Author(s):  
Asieh Abolpour Mofrad ◽  
Anis Yazidi ◽  
Hugo L. Hammer ◽  
Erik Arntzen

Stimulus equivalence (SE) and projective simulation (PS) study complex behavior, the former in human subjects and the latter in artificial agents. We apply the PS learning framework for modeling the formation of equivalence classes. For this purpose, we first modify the PS model to accommodate imitating the emergence of equivalence relations. Later, we formulate the SE formation through the matching-to-sample (MTS) procedure. The proposed version of PS model, called the equivalence projective simulation (EPS) model, is able to act within a varying action set and derive new relations without receiving feedback from the environment. To the best of our knowledge, it is the first time that the field of equivalence theory in behavior analysis has been linked to an artificial agent in a machine learning context. This model has many advantages over existing neural network models. Briefly, our EPS model is not a black box model, but rather a model with the capability of easy interpretation and flexibility for further modifications. To validate the model, some experimental results performed by prominent behavior analysts are simulated. The results confirm that the EPS model is able to reliably simulate and replicate the same behavior as real experiments in various settings, including formation of equivalence relations in typical participants, nonformation of equivalence relations in language-disabled children, and nodal effect in a linear series with nodal distance five. Moreover, through a hypothetical experiment, we discuss the possibility of applying EPS in further equivalence theory research.


2020 ◽  
Vol 59 (7-8) ◽  
pp. 835-864
Author(s):  
Nikolay Bazhenov ◽  
Manat Mustafa ◽  
Luca San Mauro ◽  
Andrea Sorbi ◽  
Mars Yamaleev

Abstract Computably enumerable equivalence relations (ceers) received a lot of attention in the literature. The standard tool to classify ceers is provided by the computable reducibility $$\leqslant _c$$ ⩽ c . This gives rise to a rich degree structure. In this paper, we lift the study of c-degrees to the $$\Delta ^0_2$$ Δ 2 0 case. In doing so, we rely on the Ershov hierarchy. For any notation a for a non-zero computable ordinal, we prove several algebraic properties of the degree structure induced by $$\leqslant _c$$ ⩽ c on the $$\Sigma ^{-1}_{a}\smallsetminus \Pi ^{-1}_a$$ Σ a - 1 \ Π a - 1 equivalence relations. A special focus of our work is on the (non)existence of infima and suprema of c-degrees.


Sign in / Sign up

Export Citation Format

Share Document