Generalising a triangle inequality

2018 ◽  
Vol 102 (555) ◽  
pp. 422-427
Author(s):  
Zoltan Retkes

The main goal of this paper is to give a deeper understanding of the geometrical inequality proposed by Martin Lukarevski in [1]. In order to formulate our results we shall introduce and use the following notation throughout this paper. Let A1A2A3 be a triangle a1, a2, a3, the lengths of the sides opposite to A1, A2, A3 respectively, P an arbitrary inner point of it xi, the distance of P from the side of length ai. Let r, R be the inradius and circumradius of the triangle hi, the altitude belonging to side ai, Δ the area and finally let α be a real parameter. We adopt also the use of Σui to refer the sum taken over the suffices i = 1, 2, 3. Now we are in the position to reformulate the original problem into a more general form namely: find bounds for Σxαi in terms of r and R. The main results of our investigation are summarised in the following theorem.

1982 ◽  
Vol 89 (2) ◽  
pp. 123-154 ◽  
Author(s):  
Amos Tversky ◽  
Itamar Gati
Keyword(s):  

2014 ◽  
Vol 13 (1) ◽  
pp. 4127-4145
Author(s):  
Madhushi Verma ◽  
Mukul Gupta ◽  
Bijeeta Pal ◽  
Prof. K. K. Shukla

Orienteering problem (OP) is an NP-Hard graph problem. The nodes of the graph are associated with scores or rewards and the edges with time delays. The goal is to obtain a Hamiltonian path connecting the two necessary check points, i.e. the source and the target along with a set of control points such that the total collected score is maximized within a specified time limit. OP finds application in several fields like logistics, transportation networks, tourism industry, etc. Most of the existing algorithms for OP can only be applied on complete graphs that satisfy the triangle inequality. Real-life scenario does not guarantee that there exists a direct link between all control point pairs or the triangle inequality is satisfied. To provide a more practical solution, we propose a stochastic greedy algorithm (RWS_OP) that uses the roulette wheel selectionmethod, does not require that the triangle inequality condition is satisfied and is capable of handling both complete as well as incomplete graphs. Based on several experiments on standard benchmark data we show that RWS_OP is faster, more efficient in terms of time budget utilization and achieves a better performance in terms of the total collected score ascompared to a recently reported algorithm for incomplete graphs.


Author(s):  
Giovanni Fusco ◽  
Monica Motta

AbstractIn this paper we consider an impulsive extension of an optimal control problem with unbounded controls, subject to endpoint and state constraints. We show that the existence of an extended-sense minimizer that is a normal extremal for a constrained Maximum Principle ensures that there is no gap between the infima of the original problem and of its extension. Furthermore, we translate such relation into verifiable sufficient conditions for normality in the form of constraint and endpoint qualifications. Links between existence of an infimum gap and normality in impulsive control have previously been explored for problems without state constraints. This paper establishes such links in the presence of state constraints and of an additional ordinary control, for locally Lipschitz continuous data.


2020 ◽  
Vol 70 (4) ◽  
pp. 849-862
Author(s):  
Shagun Banga ◽  
S. Sivaprasad Kumar

AbstractIn this paper, we use the novel idea of incorporating the recently derived formula for the fourth coefficient of Carathéodory functions, in place of the routine triangle inequality to achieve the sharp bounds of the Hankel determinants H3(1) and H2(3) for the well known class 𝓢𝓛* of starlike functions associated with the right lemniscate of Bernoulli. Apart from that the sharp bound of the Zalcman functional: $\begin{array}{} |a_3^2-a_5| \end{array}$ for the class 𝓢𝓛* is also estimated. Further, a couple of interesting results of 𝓢𝓛* are also discussed.


Author(s):  
Lu Chen ◽  
Handing Wang ◽  
Wenping Ma

AbstractReal-world optimization applications in complex systems always contain multiple factors to be optimized, which can be formulated as multi-objective optimization problems. These problems have been solved by many evolutionary algorithms like MOEA/D, NSGA-III, and KnEA. However, when the numbers of decision variables and objectives increase, the computation costs of those mentioned algorithms will be unaffordable. To reduce such high computation cost on large-scale many-objective optimization problems, we proposed a two-stage framework. The first stage of the proposed algorithm combines with a multi-tasking optimization strategy and a bi-directional search strategy, where the original problem is reformulated as a multi-tasking optimization problem in the decision space to enhance the convergence. To improve the diversity, in the second stage, the proposed algorithm applies multi-tasking optimization to a number of sub-problems based on reference points in the objective space. In this paper, to show the effectiveness of the proposed algorithm, we test the algorithm on the DTLZ and LSMOP problems and compare it with existing algorithms, and it outperforms other compared algorithms in most cases and shows disadvantage on both convergence and diversity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wassila Ghecham ◽  
Salah-Eddine Rebiai ◽  
Fatima Zohra Sidiali

Abstract A wave equation in a bounded and smooth domain of ℝ n {\mathbb{R}^{n}} with a delay term in the nonlinear boundary feedback is considered. Under suitable assumptions, global existence and uniform decay rates for the solutions are established. The proof of existence of solutions relies on a construction of suitable approximating problems for which the existence of the unique solution will be established using nonlinear semigroup theory and then passage to the limit gives the existence of solutions to the original problem. The uniform decay rates for the solutions are obtained by proving certain integral inequalities for the energy function and by establishing a comparison theorem which relates the asymptotic behavior of the energy and of the solutions to an appropriate dissipative ordinary differential equation.


2021 ◽  
Vol 36 ◽  
Author(s):  
Sergio Valcarcel Macua ◽  
Ian Davies ◽  
Aleksi Tukiainen ◽  
Enrique Munoz de Cote

Abstract We propose a fully distributed actor-critic architecture, named diffusion-distributed-actor-critic Diff-DAC, with application to multitask reinforcement learning (MRL). During the learning process, agents communicate their value and policy parameters to their neighbours, diffusing the information across a network of agents with no need for a central station. Each agent can only access data from its local task, but aims to learn a common policy that performs well for the whole set of tasks. The architecture is scalable, since the computational and communication cost per agent depends on the number of neighbours rather than the overall number of agents. We derive Diff-DAC from duality theory and provide novel insights into the actor-critic framework, showing that it is actually an instance of the dual-ascent method. We prove almost sure convergence of Diff-DAC to a common policy under general assumptions that hold even for deep neural network approximations. For more restrictive assumptions, we also prove that this common policy is a stationary point of an approximation of the original problem. Numerical results on multitask extensions of common continuous control benchmarks demonstrate that Diff-DAC stabilises learning and has a regularising effect that induces higher performance and better generalisation properties than previous architectures.


Author(s):  
Rami S. Al-Gharaibeh ◽  
Mostafa Z. Ali ◽  
Mohammad I. Daoud ◽  
Rami Alazrai ◽  
Heba Abdel-Nabi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document