Evaluating the accuracy of biodiversity changes through geologic times: from simulation to solution

Paleobiology ◽  
2017 ◽  
Vol 43 (4) ◽  
pp. 667-692 ◽  
Author(s):  
Corentin Gibert ◽  
Gilles Escarguel

AbstractEstimating biodiversity and its variations through geologic time is a notoriously difficult task, due to several taphonomic and methodological effects that make the reconstructed signal potentially distinct from the unknown, original one. Through a simulation approach, we examine the effect of a major, surprisingly still understudied, source of potential disturbance: the effect of time discretization through biochronological construction, which generates spurious coexistences of taxa within discrete time intervals (i.e., biozones), and thus potentially makes continuous- and discrete-time biodiversity curves very different. Focusing on the taxonomic-richness dimension of biodiversity (including estimates of origination and extinction rates), our approach relies on generation of random continuous-time richness curves, which are then time-discretized to estimate the noise generated by this manipulation. A broad spectrum of data-set parameters (including average taxon longevity and biozone duration, total number of taxa, and simulated time interval) is evaluated through sensitivity analysis. We show that the deteriorating effect of time discretization on the richness signal depends highly on such parameters, most particularly on average biozone duration and taxonomic longevity because of their direct relationship with the number of false coexistences generated by time discretization. With several worst-case but realistic parameter combinations (e.g., when relatively short-lived taxa are analyzed in a long-ranging biozone framework), the original and time-discretized richness curves can ultimately show a very weak to zero correlation, making these two time series independent. Based on these simulation results, we propose a simple algorithm allowing the back-transformation of a discrete-time taxonomic-richness data set, as customarily constructed by paleontologists, into a continuous-time data set. We show that the reconstructed richness curve obtained this way fits the original signal much more closely, even when the parameter combination of the original data set is particularly adverse to an effective time-discretized reconstruction.

Psychometrika ◽  
2021 ◽  
Author(s):  
Oisín Ryan ◽  
Ellen L. Hamaker

AbstractNetwork analysis of ESM data has become popular in clinical psychology. In this approach, discrete-time (DT) vector auto-regressive (VAR) models define the network structure with centrality measures used to identify intervention targets. However, VAR models suffer from time-interval dependency. Continuous-time (CT) models have been suggested as an alternative but require a conceptual shift, implying that DT-VAR parameters reflect total rather than direct effects. In this paper, we propose and illustrate a CT network approach using CT-VAR models. We define a new network representation and develop centrality measures which inform intervention targeting. This methodology is illustrated with an ESM dataset.


2004 ◽  
Vol 218 (9) ◽  
pp. 1033-1040 ◽  
Author(s):  
M. Šolc ◽  
J. Hostomský

AbstractWe present a numerical study of equilibrium composition fluctuations in a system where the reaction X1 ⇔ X2 having the equilibrium constant equal to 1 takes place. The total number of reacting particles is N. On a discrete time scale, the amplitude of a fluctuation having the lifetime 2r reaction events is defined as the difference between the number of particles X1 in the microstate most distant from the microstate N/2 visited at least once during the fluctuation lifetime, and the equilibrium number of particles X1, N/2. On the discrete time scale, the mean value of this amplitude, m̅(r̅), is calculated in the random walk approximation. On a continuous time scale, the average amplitude of fluctuations chosen randomly and regardless of their lifetime from an ensemble of fluctuations occurring within the time interval (0,z), z → ∞, tends with increasing N to ~1.243 N0.25. Introducing a fraction of fluctuation lifetime during which the composition of the system spends below the mean amplitude m̅(r̅), we obtain a value of the mean amplitude of equilibrium fluctuations on the continuous time scale equal to ~1.19√N. The results suggest that using the random walk value m̅(r̅) and taking into account a) the exponential density of fluctuations lifetimes and b) the fact that the time sequence of reaction events represents the Poisson process, we obtain values of fluctuations amplitudes which differ only slightly from those derived for the Ehrenfest model.


1988 ◽  
Vol 4 (1) ◽  
pp. 108-124 ◽  
Author(s):  
Peter Zadrozny

For purposes of maximum likelihood estimation, we show how to compute the Gaussian likelihood function when the data are generated by a higher-order continuous-time vector ARMAX model and are observed as stocks and flows at different frequencies. Continuous-time ARMAX models are analogous to discrete-time autoregressive moving-average models with distributed-lag exogenous variables. Stocks are variables observed at points in time and flows are variables observed as integrals over sampling intervals. We derive the implied state-space model of the discrete-time data and show how to use it to compute the Gaussian likelihood function with Kalman-filtering, prediction-error, decomposition of the data.


1981 ◽  
Vol 103 (4) ◽  
pp. 417-419 ◽  
Author(s):  
Bernard Friedland

The continuous-time Kalman filtering problem over a finite time interval can be made equivalent to a discrete-time filtering problem. The matrices in the latter are related to the submatrices of the transition matrix of a Hamiltonian system that corresponds to the continuous-time filtering problem.


2020 ◽  
Author(s):  
Oisín Ryan ◽  
Ellen Hamaker

Network analysis of ESM data has become popular in clinical psychology. In this approach, discrete-time (DT) vector autoregressive (VAR) models define the network structure with centrality measures used to identify intervention targets. However, VAR models suffer from time-interval dependency. Continuous Time (CT) models have been suggested as an alternative but require a conceptual shift, implying that DT-VAR parameters reflect total rather than direct effects. In this paper we propose and illustrate a CT network approach using CT-VAR models. We define a new network representation and develop centrality measures which inform intervention targeting. This methodology is illustrated with an ESM dataset.


1994 ◽  
Vol 27 (8) ◽  
pp. 1561-1566 ◽  
Author(s):  
S. Bigi ◽  
T. Söderström ◽  
B. Carlsson

2009 ◽  
Vol 2009 ◽  
pp. 1-28 ◽  
Author(s):  
M. De la Sen ◽  
A. Ibeas

This paper investigates the stability properties of a class of switched systems possessing several linear time-invariant parameterizations (or configurations) which are governed by a switching law. It is assumed that the parameterizations are stabilized individually via an appropriate linear state or output feedback stabilizing controller whose existence is first discussed. A main novelty with respect to previous research is that the various individual parameterizations might be continuous-time, discrete-time, or mixed so that the whole switched system is a hybrid continuous/discrete dynamic system. The switching rule governs the choice of the parameterization which is active at each time interval in the switched system. Global asymptotic stability of the switched system is guaranteed for the case when a common Lyapunov function exists for all the individual parameterizations and the sampling period of the eventual discretized parameterizations taking part of the switched system is small enough. Some extensions are also investigated for controlled systems under decentralized or mixed centralized/decentralized control laws which stabilize each individual active parameterization.


Sign in / Sign up

Export Citation Format

Share Document