scholarly journals Comparison of Observing Modes for Statistical Estimation of the 21 cm Signal from the Epoch of Reionisation

Author(s):  
Cathryn M. Trott

AbstractNoise considerations for experiments that aim to statistically estimate the 21 cm signal from high redshift neutral hydrogen during the Epoch of Reionisation (EoR) using interferometric data are typically computed assuming a tracked observation, where the telescope pointing centre and instrument phase centre are the same over the observation. Current low frequency interferometers use aperture arrays of fixed dipoles, which are steered electronically on the sky, and have different properties to mechanically-steered single apertures, such as reduced sensitivity away from zenith, and discrete pointing positions on the sky. These properties encourage the use of two additional observing modes: (1) zenith drift, where the pointing centre remains fixed at the zenith, and the phase centre tracks the sky, and (2) drift + shift, a hybrid mode where the telescope uses discrete pointing centres, and the sky drifts during each fixed pointing. These three observing modes view the sky differently, and therefore yield different uncertainties in the power spectrum according to the balance of radiometric noise and cosmic variance. The coherence of measurements made by the instrument in these modes dictates the optimal reduction in thermal noise by combination of coherent modes, and the reduction in cosmic variance by combination of incoherent modes (views of different patches of the sky). Along with calibration and instrument stability considerations, the balance between these noise components provides one measure for the utility of these three modes for measuring a statistical signature of the EoR signal. We provide a general framework for estimating the uncertainty in the power spectrum for a given observing mode, telescope beam shape, and interferometer antenna distribution. We then apply this framework to the Murchison Widefield Array (MWA) using an analysis of the two-dimensional (2D) and one-dimensional (1D) power spectra for 900 hours of observing. We demonstrate that zenith drift scans can yield marginally lower uncertainty in the signal power compared with tracked scans for the MWA EoR experiment, and that moderately higher signal-to-noise ratio (S/N) estimates of the amplitude (3%) and slope (1%) of the 1D power spectrum are accessible, translating directly into a reduction in the required observing time to reach the same estimation precision. We find that the additional sensitivity of pointing at zenith, and the reduction in cosmic variance available with a zenith drift scan, makes this an attractive observing mode for current and future arrays.

2019 ◽  
Vol 487 (4) ◽  
pp. 5840-5853 ◽  
Author(s):  
Adam E Lanman ◽  
Jonathan C Pober

Abstract Several experimental efforts are underway to measure the power spectrum of 21 cm fluctuations from the epoch of reionization (EoR) using low-frequency radio interferometers. Experiments like the Hydrogen Epoch of Reionization Array (HERA) and Murchison Widefield Array Phase II (MWA) feature highly redundant antenna layouts, building sensitivity through redundant measurements of the same angular Fourier modes, at the expense of diminished UV coverage. This strategy limits the numbers of independent samples of each power spectrum mode, thereby increasing the effect of sample variance on the final power spectrum uncertainty. To better quantify this effect, we measure the sample variance of a delay-transform based power spectrum estimator, using both analytic calculations and simulations of flat-spectrum EoR-like signals. We find that for the shortest baselines in HERA, the sample variance can reach as high as 20 per cent, and up to 30 per cent for the wider fields of view of the MWA. Combining estimates from all the baselines in a HERA- or MWA-like 37 element redundant hexagonal array can lower the variance to 1−3 per cent for some Fourier modes. These results have important implications for observing and analysis strategies, and suggest that sample variance can be non-negligible when constraining EoR model parameters from upcoming 21 cm data.


Author(s):  
J. Kariuki Chege ◽  
C. H. Jordan ◽  
C. Lynch ◽  
J. L. B. Line ◽  
C. M. Trott

Abstract The Epoch of Reionisation (EoR) is the period within which the neutral universe transitioned to an ionised one. This period remains unobserved using low-frequency radio interferometers, which target the 21 cm signal of neutral hydrogen emitted in this era. The Murchison Widefield Array (MWA) radio telescope was built with the detection of this signal as one of its major science goals. One of the most significant challenges towards a successful detection is that of calibration, especially in the presence of the Earth’s ionosphere. By introducing refractive source shifts, distorting source shapes, and scintillating flux densities, the ionosphere is a major nuisance in low-frequency radio astronomy. We introduce sivio, a software tool developed for simulating observations of the MWA through different ionospheric conditions, which is estimated using thin screen approximation models and propagated into the visibilities. This enables us to directly assess the impact of the ionosphere on observed EoR data and the resulting power spectra. We show that the simulated data captures the dispersive behaviour of ionospheric effects. We show that the spatial structure of the simulated ionospheric media is accurately reconstructed either from the resultant source positional offsets or from parameters evaluated during the data calibration procedure. In turn, this will inform on the best strategies of identifying and efficiently eliminating ionospheric contamination in EoR data moving into the Square Kilometre Array era.


Author(s):  
Srijita Pal ◽  
Somnath Bharadwaj ◽  
Abhik Ghosh ◽  
Samir Choudhuri

Abstract We apply the Tapered Gridded Estimator (TGE) for estimating the cosmological 21-cm power spectrum from 150 MHz GMRT observations which corresponds to the neutral hydrogen (HI) at redshift z = 8.28. Here TGE is used to measure the Multi-frequency Angular Power Spectrum (MAPS) Cℓ(Δν) first, from which we estimate the 21-cm power spectrum P(k⊥, k∥). The data here are much too small for a detection, and the aim is to demonstrate the capabilities of the estimator. We find that the estimated power spectrum is consistent with the expected foreground and noise behaviour. This demonstrates that this estimator correctly estimates the noise bias and subtracts this out to yield an unbiased estimate of the power spectrum. More than $47\%$ of the frequency channels had to be discarded from the data owing to radio-frequency interference, however the estimated power spectrum does not show any artifacts due to missing channels. Finally, we show that it is possible to suppress the foreground contribution by tapering the sky response at large angular separations from the phase center. We combine the k modes within a rectangular region in the ‘EoR window’ to obtain the spherically binned averaged dimensionless power spectra Δ2(k) along with the statistical error σ associated with the measured Δ2(k). The lowest k-bin yields Δ2(k) = (61.47)2 K2 at k = 1.59 Mpc−1, with σ = (27.40)2 K2. We obtain a 2 σ upper limit of (72.66)2 K2 on the mean squared HI 21-cm brightness temperature fluctuations at k = 1.59 Mpc−1.


2021 ◽  
Vol 2021 (12) ◽  
pp. 003
Author(s):  
José Fonseca ◽  
Chris Clarkson

Abstract In this paper, we study how to directly measure the effect of peculiar velocities in the observed angular power spectra. We do this by constructing a new anti-symmetric estimator of Large Scale Structure using different dark matter tracers. We show that the Doppler term is the major component of our estimator and we show that we can measure it with a signal-to-noise ratio up to ∼ 50 using a futuristic SKAO HI galaxy survey. We demonstrate the utility of this estimator by using it to provide constraints on the Euler equation.


2020 ◽  
Vol 497 (1) ◽  
pp. 572-580 ◽  
Author(s):  
Shivan Khullar ◽  
Qingbo Ma ◽  
Philipp Busch ◽  
Benedetta Ciardi ◽  
Marius B Eide ◽  
...  

ABSTRACT The hyperfine transition of 3He+ at 3.5 cm has been thought as a probe of the high-z IGM, since it offers a unique insight into the evolution of the helium component of the gas, as well as potentially give an independent constraint on the 21 cm signal from neutral hydrogen. In this paper, we use radiative transfer simulations of reionization driven by sources such as stars, X-ray binaries, accreting black holes and shock heated interstellar medium, and simulations of a high-z quasar to characterize the signal and analyse its prospects of detection. We find that the peak of the signal lies in the range ∼1–50 μK for both environments, but while around the quasar it is always in emission, in the case of cosmic reionization a brief period of absorption is expected. As the evolution of He ii is determined by stars, we find that it is not possible to distinguish reionization histories driven by more energetic sources. On the other hand, while a bright QSO produces a signal in 21 cm that is very similar to the one from a large collection of galaxies, its signature in 3.5 cm is very peculiar and could be a powerful probe to identify the presence of the QSO. We analyse the prospects of the signal’s detectability using SKA1-mid as our reference telescope. We find that the noise power spectrum dominates over the power spectrum of the signal, although a modest signal-to-noise ratio can be obtained when the wavenumber bin width and the survey volume are sufficiently large.


2014 ◽  
Vol 10 (S306) ◽  
pp. 144-146
Author(s):  
Paolo Serra ◽  

AbstractWe present new measurements of Cosmic Infrared Background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles ℓ ~ 150 to 2500. The interpretation based on the halo model is able to associate star-forming galaxies with dark matter halos and their subhalos, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass, and it allows to simultaneously fit all auto- and cross- power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log(Meff/M⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases.


Author(s):  
Chiaki Hikage ◽  
Masamune Oguri ◽  
Takashi Hamana ◽  
Surhud More ◽  
Rachel Mandelbaum ◽  
...  

Abstract We measure cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137 deg2 of the sky. Thanks to the high effective galaxy number density of ∼17 arcmin−2, even after conservative cuts such as a magnitude cut of i < 24.5 and photometric redshift cut of 0.3 ≤ z ≤ 1.5, we obtain a high-significance measurement of the cosmic shear power spectra in four tomographic redshift bins, achieving a total signal-to-noise ratio of 16 in the multipole range 300 ≤ ℓ ≤ 1900. We carefully account for various uncertainties in our analysis including the intrinsic alignment of galaxies, scatters and biases in photometric redshifts, residual uncertainties in the shear measurement, and modeling of the matter power spectrum. The accuracy of our power spectrum measurement method as well as our analytic model of the covariance matrix are tested against realistic mock shear catalogs. For a flat Λ cold dark matter model, we find $S\,_{8}\equiv \sigma _8(\Omega _{\rm m}/0.3)^\alpha =0.800^{+0.029}_{-0.028}$ for α = 0.45 ($S\,_8=0.780^{+0.030}_{-0.033}$ for α = 0.5) from our HSC tomographic cosmic shear analysis alone. In comparison with Planck cosmic microwave background constraints, our results prefer slightly lower values of S8, although metrics such as the Bayesian evidence ratio test do not show significant evidence for discordance between these results. We study the effect of possible additional systematic errors that are unaccounted for in our fiducial cosmic shear analysis, and find that they can shift the best-fit values of S8 by up to ∼0.6 σ in both directions. The full HSC survey data will contain several times more area, and will lead to significantly improved cosmological constraints.


2020 ◽  
Vol 501 (1) ◽  
pp. 1463-1480
Author(s):  
Nicholas S Kern ◽  
Adrian Liu

ABSTRACT One of the primary challenges in enabling the scientific potential of 21 cm intensity mapping at the epoch of reionization (EoR) is the separation of astrophysical foreground contamination. Recent works have claimed that Gaussian process regression (GPR) can robustly perform this separation, particularly at low Fourier k wavenumbers where the EoR signal reaches its peak signal-to-noise ratio. We revisit this topic by casting GPR foreground subtraction (GPR-FS) into the quadratic estimator formalism, thereby putting its statistical properties on stronger theoretical footing. We find that GPR-FS can distort the window functions at these low k modes, which, without proper decorrelation, make it difficult to probe the EoR power spectrum. Incidentally, we also show that GPR-FS is in fact closely related to the widely studied inverse covariance weighting of the optimal quadratic estimator. As a case study, we look at recent power spectrum upper limits from the Low-Frequency Array (LOFAR) that utilized GPR-FS. We pay close attention to their normalization scheme, showing that it is particularly sensitive to signal loss when the EoR covariance is misestimated. This has possible ramifications for recent astrophysical interpretations of the LOFAR limits, because many of the EoR models ruled out do not fall within the bounds of the covariance models explored by LOFAR. Being more robust to this bias, we conclude that the quadratic estimator is a more natural framework for implementing GPR-FS and computing the 21 cm power spectrum.


Sign in / Sign up

Export Citation Format

Share Document