drift scan
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 34 ◽  
pp. 110-113
Author(s):  
A.V. Pomazan ◽  
N.V. Maigurova ◽  
A.V. Shulga ◽  
Z.-H. Tang

The current state of near-Earth asteroids (NEAs) observations shows an annual increase in the number of newly discovered objects However, the frequency distribution of NEAs by size shows a sharp decrease in the number of objects with size less than 300 m, which contradicts the results of theoretical modeling of the NEA population. Considering definition of potentially hazardous asteroids (PHA), only objects with diameters more than 140 m could pose catastrophic consequences to the Earth and mankind in general. But in the same time, impacts of smaller size objects could lead to significant consequences on local level and their large predicted number increases this probability. Due to their small size which results in faint apparent magnitude, such NEAs are discovered in a short interval of their close approach (CA) to the Earth, when their apparent magnitude are tending to be as bright as possible for a given size. This is not only facilitates the detection of such new objects but also increases their observability by small ground-based telescopes. However, apparent rate of motion during this time might exceed 10 deg d −1 making the observations challenging. The used Rotating-drift-scan CCD (RDS CCD) technique allows to get images of fast-moving objects as a point, that in turn to determine the coordinates of their image centers with sufficient astrometric precision. Obtained in current research project positions show errors in the range ± (0.2″ − 0.3″) in both coordinates with comparison both to JPL's HORIZONS 1 system and NEODyS-2 2 service. The part of observations was obtained around time moment of minimal distance to the Earth during current CA for newly discovered NEAs. Such observations are important to extend observed orbital arc for reliable improvement of their orbit determinations and reducing orbital uncertainty, so it will be possible to recover them in next apparitions.


2021 ◽  
Vol 923 (1) ◽  
pp. 85
Author(s):  
A. Ashok ◽  
B. Beheshtipour ◽  
M. A. Papa ◽  
P. C. C. Freire ◽  
B. Steltner ◽  
...  

Abstract We conduct searches for continuous gravitational waves from seven pulsars that have not been targeted in continuous wave searches of Advanced LIGO data before. We target emission at exactly twice the rotation frequency of the pulsars and in a small band around such a frequency. The former search assumes that the gravitational-wave quadrupole is changing in a phase-locked manner with the rotation of the pulsar. The latter search over a range of frequencies allows for differential rotation between the component emitting the radio signal and the component emitting the gravitational waves, for example the crust or magnetosphere versus the core. Timing solutions derived from the Arecibo 327 MHz Drift-Scan Pulsar Survey observations are used. No evidence of a signal is found and upper limits are set on the gravitational-wave amplitude. For one of the pulsars we probe gravitational-wave intrinsic amplitudes just a factor of 3.8 higher than the spin-down limit, assuming a canonical moment of inertia of 1038 kg m2. Our tightest ellipticity constraint is 1.5 × 10−8, which is a value well within the range of what a neutron star crust could support.


Author(s):  
M Cruces ◽  
D J Champion ◽  
D Li ◽  
M Kramer ◽  
W W Zhu ◽  
...  

Abstract We report the follow-up of 10 pulsars discovered by the Five-hundred-meter Aperture Spherical radio-Telescope (FAST) during its commissioning. The pulsars were discovered at a frequency of 500-MHz using the ultra-wide-band (UWB) receiver in drift-scan mode, as part of the Commensal Radio Astronomy FAST Survey (CRAFTS). We carried out the timing campaign with the 100-m Effelsberg radio-telescope at L-band around 1.36 GHz. Along with 11 FAST pulsars previously reported, FAST seems to be uncovering a population of older pulsars, bordering and/or even across the pulsar death-lines. We report here two sources with notable characteristics. PSR J1951+4724 is a young and energetic pulsar with nearly 100 per cent of linearly polarized flux density and visible up to an observing frequency of 8 GHz. PSR J2338+4818, a mildly recycled pulsar in a 95.2-d orbit with a Carbon-Oxygen white dwarf (WD) companion of $\gtrsim 1\, \rm {M}_{\odot }$, based on estimates from the mass function. This system is the widest WD binary with the most massive companion known to-date. Conspicuous discrepancy was found between estimations based on NE2001 and YMW16 electron density models, which can be attributed to under-representation of pulsars in the sky region between Galactic longitudes 70○ < l < 100○. This work represents one of the early CRAFTS results, which start to show potential to substantially enrich the pulsar sample and refine the Galactic electron density model.


Author(s):  
Steven Tingay

Abstract In order to further develop and implement novel drift scan imaging experiments to undertake wide-field, high time resolution surveys for millisecond optical transients, an appropriate telescope drive system is required. This paper describes the development of a simple and inexpensive hardware and software system to monitor, characterise, and correct the primary category of telescope drive errors and periodic errors due to imperfections in the drive and gear chain. A model for the periodic errors is generated from direct measurements of the telescope drive shaft rotation, verified by comparison to astronomical measurements of the periodic errors. The predictive model is generated and applied in real time in the form of corrections to the drive rate. A demonstration of the system shows that inherent periodic errors of peak-to-peak amplitude ${\sim}{100}''$ are reduced to below the seeing limit of ${\sim}3''$ . This demonstration allowed an estimate of the uncertainties on the transient sensitivity timescales of the prototype survey of Tingay $\&$ Joubert (2021), with the nominal timescale sensitivity of 21 ms revised to be in the range of $20\!-\!22$ ms, which does not significantly affect the results of the experiment. The correction system will be adopted into the final version of high-cadence imaging experiment, which is currently under construction. The correction system is inexpensive ( $<\!{\$}$ A100) and composed of readily available hardware and is readily adaptable to other applications. Design details and codes are therefore made publicly available.


Author(s):  
Steven Tingay ◽  
Wynand Joubert

Abstract We have realised a simple prototype system to perform searches for short timescale optical transients, utilising the novel drift scan imaging technique described by Tingay (2020). We used two coordinated and aligned cameras, with an overlap field of view of approximately 3.7 deg $^2$ , to capture over $34\,000 \times 5$ second images during approximately 24 h of observing. The system is sensitive to optical transients, due to an effective exposure time per pixel of 21 ms, brighter than a V magnitude of 6.6. In our 89.7 deg $^2$ h of observations, we find no candidate astronomical transients, giving an upper limit to the rate of these transients of 0.8 per deg $^2$ per day, competitive with other experiments of this type. The system is triggered by reflections from satellites and various instrumental effects, which are easily identifiable due to the two camera system. The next step in the development of this promising technique is to move to a system with larger apertures and wider fields of view.


2020 ◽  
Vol 499 (3) ◽  
pp. 4158-4173 ◽  
Author(s):  
B K Gehlot ◽  
F G Mertens ◽  
L V E Koopmans ◽  
A R Offringa ◽  
A Shulevski ◽  
...  

ABSTRACT The 21-cm absorption feature reported by the EDGES collaboration is several times stronger than that predicted by traditional astrophysical models. If genuine, a deeper absorption may lead to stronger fluctuations on the 21-cm signal on degree scales (up to 1 K in rms), allowing these fluctuations to be detectable in nearly 50 times shorter integration times compared to previous predictions. We commenced the ‘AARTFAAC Cosmic Explorer’ (ACE) program, which employs the AARTFAAC wide-field image, to measure or set limits on the power spectrum of the 21-cm fluctuations in the redshift range z = 17.9–18.6 (Δν = 72.36–75.09 MHz) corresponding to the deep part of the EDGES absorption feature. Here, we present first results from two LST bins: 23.5–23.75 and 23.75–24.00 h, each with 2 h of data, recorded in ‘semi drift-scan’ mode. We demonstrate the application of the new ACE data-processing pipeline (adapted from the LOFAR-EoR pipeline) on the AARTFAAC data. We observe that noise estimates from the channel and time-differenced Stokes V visibilities agree with each other. After 2 h of integration and subtraction of bright foregrounds, we obtain 2σ upper limits on the 21-cm power spectrum of $\Delta _{21}^2 \lt (8139~\textrm {mK})^2$ and $\Delta _{21}^2 \lt (8549~\textrm {mK})^2$ at $k = 0.144~h\, \textrm {cMpc}^{-1}$ for the two LST bins. Incoherently averaging the noise bias-corrected power spectra for the two LST bins yields an upper limit of $\Delta _{21}^2 \lt (7388~\textrm {mK})^2$ at $k = 0.144~h\, \textrm {cMpc}^{-1}$. These are the deepest upper limits thus far at these redshifts.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Kuniyuki Asuma ◽  
Kotaro Niinuma ◽  
Kazuhiro Takefuji ◽  
Takahiro Aoki ◽  
Sumiko Kida ◽  
...  

Abstract Waseda University Nasu telescope array is a spatial fast Fourier transform interferometer consisting of eight linearly aligned antennas with 20 m spherical dishes. This type of interferometer was developed to survey transient radio sources with an angular resolution as high as that of a 160 m dish and a field of view as wide as that of a 20 m dish. We have been performing drift-scan-mode observations, in which the telescope scans the sky around a selected declination as the Earth rotates. The black hole X-ray binary V404 Cygni underwent a new outburst in 2015 June after a quiescent period of 26 yr. Because of the interest in black hole binaries, a considerable amount of data on this outburst at all wavelengths was accumulated. Using the above telescope, we had been monitoring V404 Cygni daily from one month before the X-ray outburst, and two radio flares at 1.4 GHz were detected on 2015 June 21.73 and June 26.71. The flux density and timescale of the flares were 313 ± 30 mJy and 1.50 ± 0.49 d, 364 ± 30 mJy and 1.70 ± 0.16 d, respectively. We also confirmed the extreme variation of the radio spectra within a short period by collecting other radio data observed with several radio telescopes. Such spectral behavior is considered to reflect the change in the opacity of the ejected blobs associated with these extreme activities in radio and X-ray. Our 1.4 GHz radio data are expected to be helpful for studying the physics of the accretion and ejection phenomena around black holes.


2020 ◽  
Vol 20 (6) ◽  
pp. 091
Author(s):  
Qiu-Yu Yu ◽  
Zhi-Chen Pan ◽  
Lei Qian ◽  
Shen Wang ◽  
You-Ling Yue ◽  
...  
Keyword(s):  

2020 ◽  
Vol 895 (1) ◽  
pp. L6 ◽  
Author(s):  
Weiwei Zhu ◽  
Di Li ◽  
Rui Luo ◽  
Chenchen Miao ◽  
Bing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document