scholarly journals Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes

Author(s):  
Tyrone E. Woods ◽  
Bhaskar Agarwal ◽  
Volker Bromm ◽  
Andrew Bunker ◽  
Ke-Jung Chen ◽  
...  

Abstract In recent years, the discovery of massive quasars at $z\sim7$ has provided a striking challenge to our understanding of the origin and growth of supermassive black holes in the early Universe. Mounting observational and theoretical evidence indicates the viability of massive seeds, formed by the collapse of supermassive stars, as a progenitor model for such early, massive accreting black holes. Although considerable progress has been made in our theoretical understanding, many questions remain regarding how (and how often) such objects may form, how they live and die, and how next generation observatories may yield new insight into the origin of these primordial titans. This review focusses on our present understanding of this remarkable formation scenario, based on the discussions held at the Monash Prato Centre from November 20 to 24, 2017, during the workshop ‘Titans of the Early Universe: The Origin of the First Supermassive Black Holes’.

2019 ◽  
Vol 60 (2) ◽  
pp. 111-126 ◽  
Author(s):  
Aaron Smith ◽  
Volker Bromm

Author(s):  
S Sazonov ◽  
I Khabibullin

Abstract There is a hope that looking into the early Universe with next-generation telescopes, one will be able to observe the early accretion growth of supermassive black holes (BHs) when their masses were ∼104–106M⊙. According to the standard accretion theory, the bulk of the gravitational potential energy released by radiatively efficient accretion of matter onto a BH in this mass range is expected to be emitted in the extreme UV–ultrasoft X-ray bands. We demonstrate that such a ’miniquasar’ at z ∼ 15 should leave a specific, localized imprint on the 21 cm cosmological signal. Namely, its position on the sky will be surrounded by a region with a fairly sharp boundary of several arcmin radius, within which the 21 cm brightness temperature quickly grows inwards from the background value of ∼−250 mK to ∼+30 mK. The size of this region is only weakly sensitive to the BH mass, so that the flux density of the excess 21 cm signal is expected to be ∼0.1–0.2 mJy at z ∼ 15 and should be detectable by the Square Kilometer Array. We argue that an optimal strategy would be to search for such signals from high-z miniquasar candidates that can be found and localized with a next-generation X-ray mission such as Lynx. A detection of the predicted 21 cm signal would provide a measurement of the growing BH’s redshift to within Δz/(1 + z) ≲ 0.01.


1999 ◽  
Vol 186 ◽  
pp. 307-310
Author(s):  
Y. Taniguchi ◽  
Y. Shioya ◽  
T. Murayama ◽  
K. Wada

A unified formation mechanism of nuclear starbursts is presented; all the nuclear starbursts are triggered by binary supermassive black holes made in the final phase of galaxy mergers. Minor mergers cause both nuclear starbursts and hot-spot nuclei while major mergers cause (ultra) luminous infrared galaxies. We discuss the case of Arp 220 in detail.


2021 ◽  
Vol 4 (1) ◽  

Recent observations show that there are many more and much older black holes than previously known. What is particularly puzzling is that supermassive black holes containing more than a billion solar masses already existed in the very early universe. To date, there is no conclusive explanation for how such gravity monsters could have been created in such a short time after the Big Bang. The "Cosmic Time Hypothesis (CTH)" offers a solution to this problem [1]. According to this hypothesis, the early universe had much more time at its disposal than according to the "present-time scale" and the material-condensing forces were much stronger than now. Therefore, objects with extremely large masses could form in a very short "today-time".


Recent observations show that there are many more and much older black holes than previously known. What is particularly puzzling is that supermassive black holes containing more than a billion solar masses already existed in the very early universe. To date, there is no conclusive explanation for how such gravity monsters could have been created in such a short time after the Big Bang. The “Cosmic Time Hypothesis (CTH)” offers a solution to this problem [1]. According to this hypothesis, the early universe had much more time at its disposal than according to the “present-time scale” and the material-condensing forces were much stronger than now. Therefore, objects with extremely large masses could form in a very short “todaytime”.


Sign in / Sign up

Export Citation Format

Share Document