Spatiotemporal evolution of paludification associated with autogenic and allogenic factors in the black spruce–moss boreal forest of Québec, Canada

2019 ◽  
Vol 91 (2) ◽  
pp. 650-664 ◽  
Author(s):  
Éloïse Le Stum-Boivin ◽  
Gabriel Magnan ◽  
Michelle Garneau ◽  
Nicole J. Fenton ◽  
Pierre Grondin ◽  
...  

AbstractPaludification is the most common process of peatland formation in boreal regions. In this study, we investigated the autogenic (e.g., topography) and allogenic (fire and climate) factors triggering paludification in different geomorphological contexts (glaciolacustrine silty-clayey and fluvioglacial deposits) within the Québec black spruce (Picea mariana)–moss boreal forest. Paleoecological analyses were conducted along three toposequences varying from a forest on mineral soil to forested and semi-open peatlands. Plant macrofossil and charcoal analyses were performed on basal peat sections (≤50 cm) and thick forest humus (<40 cm) to reconstruct local vegetation dynamics and fire history involved in the paludification process. Results show that primary paludification started in small topographic depressions after land emergence ca. 8000 cal yr BP within rich fens. Lateral peatland expansion and secondary paludification into adjacent forests occurred between ca. 5100 and 2300 cal yr BP and resulted from low-severity fires during a climatic deterioration. Fires that reduced or eliminated entirely the organic layer promoted the establishment ofSphagnumin microdepressions. Paludification resulted in the decline of some coniferous species such asAbies balsameaandPinus banksiana. The paleoecological approach along toposequences allowed us to understand the spatiotemporal dynamics of paludification and its impacts on the vegetation dynamics over the Holocene.

2005 ◽  
Vol 35 (9) ◽  
pp. 2164-2177 ◽  
Author(s):  
Eric S Kasischke ◽  
Jill F Johnstone

This study investigated the relationship between climate and landscape characteristics and surface fuel consumption as well as the effects of variations in postfire organic layer depth on soil temperature and moisture in a black spruce (Picea mariana (Mill.) BSP) forest complex in interior Alaska. Mineral soil moisture and temperature at the end of the growing season and organic layer depth were measured in three burns occurring in different years (1987, 1994, 1999) and in adjacent unburned stands. In unburned stands, average organic layer and humic layer depth increased with stand age. Mineral soil temperature and moisture varied as a function of the surface organic layer depth in unburned stands, indicating that as a stand matures, the moisture content of the deep duff layer is likely to increase as well. Fires reduced the depth of the surface organic layers by 5 to 24 cm. Within each burn we found that significant variations in levels of surface fuel consumption were related to several factors, including mineral soil texture, presence or absence of permafrost, and timing of the fires with respect to seasonal permafrost thaw. While seasonal weather patterns contribute to variations in fuel moisture and consumption during fires, interactions among the soil thermal regime, surface organic layer depth, and previous fire history are also important in controlling patterns of surface fuel consumption.


2002 ◽  
Vol 32 (9) ◽  
pp. 1607-1615 ◽  
Author(s):  
I Charron ◽  
D F Greene

We studied the post-wildfire establishment of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP), and white spruce (Picea glauca (Moench) Voss) in the southern mixedwood boreal forest of Saskatchewan, Canada. The major objective of the study was to determine the influence of post-wildfire seedbed types on the juvenile survivorship of trees. Through a combination of permanent plots and sowing experiments, we demonstrated that mineral soil, thin Polytrichum Hedw. moss, and humus are much more favorable than the organic fermentation (Of) and litter seedbeds. We also show that differences among seedbeds are significantly more important than differences among species. In addition, the first year of a cohort has the highest rate of mortality, about 85% on mineral and humus seedbeds and 98% on Of seedbeds; differences in age-specific survivorship between seedbeds become muted by the end of the second year, and survivorship rates approach 1 by the end of the third summer. Finally, age structures showed that germination rates of black spruce and jack pine were very low the initial summer of the fire; that there was a peak in recruitment in the first post-fire summer; and that by the fourth year the recruitment declined to nearly zero.


1992 ◽  
Vol 70 (6) ◽  
pp. 1157-1167 ◽  
Author(s):  
Mireille Desponts ◽  
Serge Payette

The northernmost jack pine (Pinus banksiana Lamb.) populations in northern Quebec are located at the boreal forest–forest tundra boundary, along the Grande rivière de la Baleine, where they colonize the sandy terraces affected by recurrent fires. The recent fire history in the study area, as deduced from fire scar and age structure data, spans a 216-year period from 1773 to 1988. Forest fires occurred on the sites at intervals averaging 40 to 80 years. The analysis of 19 coniferous stands (jack pine and black spruce (Picea mariana (Mill.) Bsp)) indicated that forest communities younger than 67 years old were open jack pine – Cladina mitis or jack pine – black spruce – C. mitis woodlands, while the oldest stands, more than 132 years old, were dominated by jack pine, black spruce, and Cladina stellaris. Stands less than 67-years-old had an age structure almost normally distributed and regeneration often occurred within less than 30 years after fire in both species, while most stands older than 132 years had a multiaged structure. In sites with a prolonged fire-free interval, jack pine was overgrown by black spruce. Spruce woodlands have developed on sites where the organic layer was relatively thick and continuous and they are the end result of the postfire successional process. However, at several sites both conifer species showed an ability to regenerate in prolonged absence of fire disturbance, particularly in open sites with exposed mineral substrates. At the regional scale, fire frequency during the last 200 years has been high enough to prevent pine exclusion at its range limit. The key requirement for the long-term maintenance of jack pine populations is that fires return at intervals shorter than the average life-span of individual trees. It is concluded that the northernmost jack pine populations are able to maintain and regenerate under present fire conditions. Key words: fire, subarctic, jack pine, postfire regeneration, boreal forest.


2016 ◽  
Vol 459 ◽  
pp. 570-584 ◽  
Author(s):  
Elena Yu. Novenko ◽  
Andrey N. Tsyganov ◽  
Elena M. Volkova ◽  
Dmitrii A. Kupriyanov ◽  
Iya V. Mironenko ◽  
...  

1991 ◽  
Vol 71 (4) ◽  
pp. 397-410 ◽  
Author(s):  
X. J. Xiao ◽  
D. W. Anderson ◽  
J. R. Bettany

Pedogenesis and its effect on calcium (Ca), magnesium (Mg) and phosphorus (P) was studied on a sequence of seven Gray Luvisol soils in central Saskatchewan. The soils were formed on calcareous glacial till under trembling aspen (Populus tremuloides Michx), mixedwood (aspen and white spruce) (Picea glauca (Moench) Voss)) and coniferous (black spruce and jack pine) (Picea mariana (Mill) BSP and Pinus banksiana Lamb) forests. Soils under aspen had the highest concentration of total and exchangeable Ca and Mg in litter layers and Ae horizons, and had Ae and Bt horizons that were least acidic. The most acidic Ae and Bt horizons and lowest amounts of Ca and Mg occurred under coniferous forests, whereas the soils under mixedwood stands were intermediate. The thickness of eluvial (Ae and AB) horizons increased along the aspen to coniferous sequence. All soils had about 40% less P in their A and B horizons than was calculated to have been present at the start of soil formation. The greatest decrease in P was observed in the thickest and most acidic soil under coniferous forest. The present litter layers and vegetation make up only a small proportion of the P removed from the mineral soil. Unusually large amounts of P appear to have been translocated from A and B horizons during development of Gray Luvisols, in comparison to Chernozemic or even Podzolic soils. Our hypothesis proposes that P is ineffectively retained in the solum as P-clay-humus, or iron-P complexes and that organic P moves along with the soil water, laterally and downslope through permeable Ae horizon over less permeable Bt horizons, or vertically through macropores. Key words: Boreal forest, nutrient cycling, phosphorus losses, weathering, soil formation


2004 ◽  
Vol 34 (9) ◽  
pp. 1938-1945 ◽  
Author(s):  
Isobel Waters ◽  
Steven W Kembel ◽  
Jean-François Gingras ◽  
Jennifer M Shay

This study compares the effects of full-tree versus cut-to-length forest harvesting methods on tree regeneration in jack pine (Pinus banksiana Lamb.), mixedwood (Picea glauca (Moench) Voss – Populus tremuloides Michx. – Abies balsamea (L.) Mill.), and black spruce (Picea mariana (Mill.) BSP) sites in southeastern Manitoba, Canada. We surveyed tree regeneration densities, disturbance characteristics, and understorey vegetation in replicated control and harvested plots in each site type preharvest (1993) and 1 and 3 years postharvest (1994, 1996). In jack pine sites, the full-tree harvest method promoted regeneration of Pinus banksiana through increased disturbance of soil and the moss layer, and decreased slash deposition relative to the cut-to-length method. Conversely, in mixedwood sites the cut-to-length method resulted in less damage to advance regeneration and proved better at promoting postharvest regeneration of Abies balsamea and Picea glauca relative to the full-tree method. In black spruce sites, there were few differences in the impact of the two harvesting methods on regeneration of Picea mariana, which increased in frequency and density after both types of harvesting.


2010 ◽  
Vol 40 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Xavier Cavard ◽  
Yves Bergeron ◽  
Han Y.H. Chen ◽  
David Paré

This study investigates the potential of mixed forest stands as better aboveground carbon sinks than pure stands. According to the facilitation and niche complementarity hypotheses, we predict higher carbon sequestration in mature boreal mixedwoods. Aboveground carbon contents of black spruce ( Picea mariana (Mill.) Britton, Sterns, Poggenb.) and trembling aspen ( Populus tremuloides Michx.) mixtures were investigated in the eastern boreal forest, whereas jack pine ( Pinus banksiana Lamb.) and trembling aspen were used in the central boreal forest. No carbon gain was found in species mixtures; nearly pure trembling aspen stands contained the greatest amount of aboveground carbon, black spruce stands had the least, and mixtures were intermediate with amounts that could generally be predicted by linear interpolation with stem proportions. These results suggest that for aspen, the potentially detrimental effect of spruce on soils observed in other studies may be offset by greater light availability in mixtures. On the other hand, for black spruce, the potentially beneficial effects of aspen on soils could be offset by greater competition by aspen for nutrients and light. The mixture of jack pine and trembling aspen did not benefit any of these species while inducing a loss in trembling aspen carbon at the stand level.


2005 ◽  
Vol 81 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Daniel Mailly ◽  
Mélanie Gaudreault

The objective of this study was to develop variable growth intercept models for coniferous species of major importance in Quebec using Nigh's (1997a) modelling technique. Eighty-three, 68, and 70 stem analysis plots of black spruce (Picea mariana [Mill.] BSP), jack pine (Pinus banksiana Lamb.) and balsam fir (Abies balsamea (L.) Mill) were used, respectively. The growth intercept models for black spruce were the most precise, followed by those for jack pine and finally by those for balsam fir, based on the root mean square errors. Results indicated that the accuracy of the models was good, relative to those previously published for other species in Canada. Interim testing of the models revealed a low mean error for all three species that may not be of practical significance for site index determination, although more data should be obtained to further test the models. Key words: balsam fir, black spruce, growth intercept, jack pine, model, nonlinear regression, site index


Sign in / Sign up

Export Citation Format

Share Document