topographic depressions
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7403
Author(s):  
Pavel P Fil ◽  
Alla Yu Yurova ◽  
Alexey Dobrokhotov ◽  
Daniil Kozlov

In semi-arid ecoregions of temperate zones, focused snowmelt water infiltration in topographic depressions is a key, but imperfectly understood, groundwater recharge mechanism. Routine monitoring is precluded by the abundance of depressions. We have used remote-sensing data to construct mass balances and estimate volumes of temporary ponds in the Tambov area of Russia. First, small water bodies were automatically recognized in each of a time series of high-resolution Planet Labs images taken in April and May 2021 by object-oriented supervised classification. A training set of water pixels defined in one of the latest images using a small unmanned aerial vehicle enabled high-confidence predictions of water pixels in the earlier images (Cohen’s Κ = 0.99). A digital elevation model was used to estimate the ponds’ water volumes, which decreased with time following a negative exponential equation. The power of the exponent did not systematically depend on the pond size. With adjustment for estimates of daily Penman evaporation, function-based interpolation of the water bodies’ areas and volumes allowed calculation of daily infiltration into the depression beds. The infiltration was maximal (5–40 mm/day) at onset of spring and decreased with time during the study period. Use of the spatially variable infiltration rates improved steady-state shallow groundwater simulations.


2021 ◽  
Author(s):  
Da Huo ◽  
Michael P. Bishop

Abstract. Supraglacial ponds play a significant role in the mass loss of many debris-covered glaciers in the Himalaya. Glacier surface topography and debris flux conditions are thought to govern supraglacial ponding and drainage. Existing studies, however, have not adequately investigated the relationships and feedbacks between meltwater production, debris transport, topographic evolution and ponding, because field measurements are limited in time and space, and most existing models either neglect these processes or use oversimplified assumptions. Such limitations restrict our understanding of supraglacial hydrology and introduce uncertainties in our assessments of glacier sensitivity to climate forcing. This study develops a more comprehensive numerical model to provide insights into the couplings between topographically-controlled surface ablation, meltwater drainage, ponding, and gravitational debris transport under radiative forcing. We investigate supraglacial ponding and drainage dynamics in response to different topographic and debris flux conditions through numerical simulations based on Baltoro Glacier in the Karakoram and several hypothetical scenarios. Results suggest that: 1) Supraglacial ponds make a significant contribution to the total ice loss (more than 20 %) in the lower-mid ablation zone over one ablation season, which elevates the glacier's nonlinear response to radiative forcing. 2) Gravitational debris transport has a non-negligible control on the growth rate of supraglacial ponds by governing debris thickness and ablation rates on the ice-cliffs around ponds. 3) Glacier surface gradient and local topographic depressions control pond formation by affecting supraglacial water storage and drainage. Our simulations provide a possible explanation to the abundance of ponds in the mid ablation zone where slope is gentle and more local depressions are present. These findings may contribute to more accurate predictions of future glacier changes in response to climate change.


Author(s):  
Michail E. Komarovskiy

The relief of the ice-sheet bed predetermines the location of the valleys both in vast regions and in local, relatively limited areas. The influence of the relief in a large region on the formation of valleys occurs in lowland, more dissected northern and western regions of Belarus. Here, the bedrock relief plays a key role in appearance the hollow-like Vidzovsky, Polotsk and Surazh glacial erosion depressions and in isolation of the elevations separating them. The distribution of these largest forms of glacial erosion is associated with the regional picture of the glacial ice flow in topographic depressions, increased erosion of the ice bed, which developed under the glacial streams and lobes of the Scandinavian ice sheet. The degree and character of the relief dissection, the size, surface slope and orientation of the depressions, river paleo-valleys, elevations, and escarps had a leading role in the location of valleys in local, relatively limited areas. Their significance for the formation of valleys was to determine the local picture of the glacial flow and the areas where stresses were concentrated at the bed and glacial erosion intensified. The formation of tunnel valleys was possible in depressions and in the dissected relief of the glacial bed, which contributed to the accumulation of meltwater, the formation of subglacial lakes, as well as the concentration of meltwater in the subglacial channels.


2021 ◽  
Vol 3 (2) ◽  
pp. 162-184
Author(s):  
Polina Lemenkova

This paper examines spatial variations in the geomorphology of the Ninety East Ridge (NER), located in the Indian Ocean. The NER is an extraordinary long linear bathymetric feature with topography reflecting complex geophysical setting and geologic evolution. The research is based on a compilation of high-resolution bathymetric, geological, and gravity datasets clipped for the study area extent  (65° -  107°E, 35°S - 21°N): General Bathymetric Chart of the Oceans (GEBCO), Earth Gravitational Model (EGM2008, EGM96). The submarine geomorphology of the NER was modeled by digitized cross-sectional profiles using Generic Mapping Tools (GMT). The availability of the method is explained by 1) the free datasets; 2) the open source GMT toolset; 3) the available tutorials of the GMT and the codes explained in this work. Three segments of the NER were selected, digitized, and modeled: 1) northern 89°E, 7°S to 90°E, 7°N; 2) central 88.4°E, 14.7°S to 88.8°E, 8.2°S; 3) southern 87.9°E, 17°S to 87.5°E, 27°S. Measured depths were visualized in graphs, compared, and statistically analyzed by the histograms. The northern segment has a steepness of 21.3° at the western slopes, and 14.5° at the eastern slope. The slopes on the eastern flank have dominant SE orientation. The central segment has a bell-shaped form, with the highest steepness comparing to the northern and southern segments. The eastern flank has a steepness of 49.5°. A local depression at a distance of 50 km off from the axis (90°E) continues parallel to the NER, with the shape of the narrow minor trench. The western slope has a steepness of 57.6°, decreasing to 15.6°. The southern segment has a dome-like shape form. Compared to the northern and central segments, it has a less pronounced ridge crest, with a steepness of 24.9° on the west. The eastern flank has a steepness of 36.8° until 70 km, gradually becoming steeper at 44.23°. A local minor trench structure can be seen on its eastern flank (100 km off the axis). This corresponds to the very narrow long topographic depressions stretching parallel to this segment of the NER at 90.5°E. The study contributes to regional geographic studies of Indian Ocean geomorphology and cartographic presentation of GMT functionality for marine research and oceanographic studies.


2021 ◽  
Vol 51 (1) ◽  
pp. 207-228
Author(s):  
Aviv Solodoch ◽  
Andrew L. Stewart ◽  
James C. McWilliams

AbstractLong-lived anticyclonic eddies (ACs) have been repeatedly observed over several North Atlantic basins characterized by bowl-like topographic depressions. Motivated by these previous findings, the authors conduct numerical simulations of the spindown of eddies initialized in idealized topographic bowls. In experiments with one or two isopycnal layers, it is found that a bowl-trapped AC is an emergent circulation pattern under a wide range of parameters. The trapped AC, often formed by repeated mergers of ACs over the bowl interior, is characterized by anomalously low potential vorticity (PV). Several PV segregation mechanisms that can contribute to the AC formation are examined. In one-layer experiments, the dynamics of the AC are largely determined by a nonlinearity parameter ϵ that quantifies the vorticity of the AC relative to the bowl’s topographic PV gradient. The AC is trapped in the bowl for low , but for moderate values () partial PV segregation allows the AC to reside at finite distances from the center of the bowl. For higher , eddies freely cross the topography and the AC is not confined to the bowl. These regimes are characterized across a suite of model experiments using ϵ and a PV homogenization parameter. Two-layer experiments show that the trapped AC can be top or bottom intensified, as determined by the domain-mean initial vertical energy distribution. These findings contrast with previous theories of mesoscale turbulence over topography that predict the formation of a prograde slope current, but do not predict a trapped AC.


2020 ◽  
Vol 145 ◽  
pp. 103732
Author(s):  
A.R. Kacimov ◽  
Yu.V. Obnosov ◽  
J. Šimůnek

2020 ◽  
Vol 6 (2) ◽  
pp. 59-69
Author(s):  
Pratima Pandey ◽  
S. Nawaz Ali ◽  
Vikram Sharma ◽  
Prashant K. Champati Ray

Thermokarst (Thaw) lakes are landforms found in topographic depressions created by thawing ground ice in permafrost zones. They play an important role in the regulation of climatic functions. These lakes are a manifestation of warming surface temperatures that accelerates the ice-rich permafrost to degrade by creating marshy hollows/ponds. In the current global warming scenario, the thermokarst lakes in the high mountain regions (Himalaya) are expected to grow further. This accelerate permafrost thawing which will affect the carbon cycle, hydrology and local ecosystems. This phenomenon has attracted huge scientific attention because it has led to a rapid mass change of glaciers in the region, including extensive changes occurring on peri-glacial environments. The most striking fact is the release of an enormous amount of greenhouse gases, including methane, carbon dioxide and nitrous oxide that is locked in these lakes. The present study delves into the thermokarst lakes in the upper reaches of Chandra Valley and Western Himalaya. The study also aims at designating the impact of their changes on the ecosystem, particularly their influence on the atmospheric greenhouse gas concentrations.


2020 ◽  
Vol 37 (6) ◽  
pp. 1135-1137
Author(s):  
Hans van Haren ◽  
Martin Laan ◽  
Sander Asjes ◽  
Bas Denissen

AbstractWe relate about the custom-made modification of a Benthos deep-ocean acoustic release into a “deep caller,” an acoustic transducer for calling and releasing ocean acoustic transponding releases that cannot be reached from a standard deck unit. The self-contained deep caller can be lowered down to 12 km on any nonconducting winch cable. It may prove useful to retrieve subsurface instrumentation like a seafloor lander hidden behind large rocks or in a narrow canyon, or moorings in very deep topographic depressions. We used it to retrieve a 7-km-long mooring from 10 910-m depth in the Challenger Deep, Mariana Trench, that a standard deck unit could not reach.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lin Hu ◽  
Weimin Bao ◽  
Peng Shi ◽  
Jianjin Wang ◽  
Meixia Lu

Sign in / Sign up

Export Citation Format

Share Document