On inference in a one-dimensional mosaic and an M/G/∞ queue

1985 ◽  
Vol 17 (01) ◽  
pp. 210-229
Author(s):  
Peter Hall

Suppose segments are distributed at random along a line, their locations being determined by a Poisson process. In the case where segment length is fixed, we compare efficiencies of several different estimates of Poisson intensity. The case of random segment length is also considered, and there we study estimation procedures based on empiric properties. The one-dimensional mosaic may be viewed as an M/G/∞ queue.

1985 ◽  
Vol 17 (1) ◽  
pp. 210-229 ◽  
Author(s):  
Peter Hall

Suppose segments are distributed at random along a line, their locations being determined by a Poisson process. In the case where segment length is fixed, we compare efficiencies of several different estimates of Poisson intensity. The case of random segment length is also considered, and there we study estimation procedures based on empiric properties. The one-dimensional mosaic may be viewed as an M/G/∞ queue.


2018 ◽  
Vol 38 (1) ◽  
pp. 77-101
Author(s):  
Palaniappan Vellai Samy ◽  
Aditya Maheshwari

In this paper, we define a fractional negative binomial process FNBP by replacing the Poisson process by a fractional Poisson process FPP in the gamma subordinated form of the negative binomial process. It is shown that the one-dimensional distributions of the FPP and the FNBP are not infinitely divisible. Also, the space fractional Pólya process SFPP is defined by replacing the rate parameter λ by a gamma random variable in the definition of the space fractional Poisson process. The properties of the FNBP and the SFPP and the connections to PDEs governing the density of the FNBP and the SFPP are also investigated.


1968 ◽  
Vol 5 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Erhan Çinlar

Consider n independent vector valued point processes. Superposition is defined component by component as a natural extension of the definition for the one-dimensional case. Under proper conditions as n → ∞, it is shown that the superposed process is a many-dimensional Poisson process with independent components. The results are applied to the superposition of Markov renewal processes.


1968 ◽  
Vol 5 (01) ◽  
pp. 169-176 ◽  
Author(s):  
Erhan Çinlar

Consider n independent vector valued point processes. Superposition is defined component by component as a natural extension of the definition for the one-dimensional case. Under proper conditions as n → ∞, it is shown that the superposed process is a many-dimensional Poisson process with independent components. The results are applied to the superposition of Markov renewal processes.


2011 ◽  
Vol 2011 ◽  
pp. 1-21 ◽  
Author(s):  
L. Decreusefond ◽  
E. Ferraz

Given a Poisson process on a bounded interval, its random geometric graph is the graph whose vertices are the points of the Poisson process, and edges exist between two points if and only if their distance is less than a fixed given threshold. We compute explicitly the distribution of the number of connected components of this graph. The proof relies on inverting some Laplace transforms.


2016 ◽  
Vol 22 (4) ◽  
Author(s):  
Jem N. Corcoran ◽  
Dale Jennings ◽  
Paul VaughanMiller

AbstractWe review the derivation of the Kac master equation model for random collisions of particles, its relationship to the Poisson process, and existing algorithms for simulating values from the marginal distribution of velocity for a single particle at any given time. We describe and implement a new algorithm that efficiently and more fully leverages properties of the Poisson process, show that it performs at least as well as existing methods, and give empirical evidence that it may perform better at capturing the tails of the single particle velocity distribution. Finally, we derive and implement a novel “ε-perfect sampling” algorithm for the limiting marginal distribution as time goes to infinity. In this case the importance is a proof of concept that has the potential to be expanded to more interesting (DSMC) direct simulation Monte Carlo applications.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


2011 ◽  
Vol 35 (1) ◽  
pp. 15-27
Author(s):  
Zoran Ivić ◽  
Željko Pržulj

Adiabatic large polarons in anisotropic molecular crystals We study the large polaron whose motion is confined to a single chain in a system composed of the collection of parallel molecular chains embedded in threedimensional lattice. It is found that the interchain coupling has a significant impact on the large polaron characteristics. In particular, its radius is quite larger while its effective mass is considerably lighter than that estimated within the one-dimensional models. We believe that our findings should be taken into account for the proper understanding of the possible role of large polarons in the charge and energy transfer in quasi-one-dimensional substances.


Sign in / Sign up

Export Citation Format

Share Document