Transient behavior of regulated Brownian motion, I: Starting at the origin

1987 ◽  
Vol 19 (03) ◽  
pp. 560-598 ◽  
Author(s):  
Joseph Abate ◽  
Ward Whitt

A natural model for stochastic flow systems is regulated or reflecting Brownian motion (RBM), which is Brownian motion on the positive real line with constant negative drift and constant diffusion coefficient, modified by an impenetrable reflecting barrier at the origin. As a basis for understanding how stochastic flow systems approach steady state, this paper provides relatively simple descriptions of the moments of RBM as functions of time. In Part I attention is restricted to the case in which RBM starts at the origin; then the moment functions are increasing. After normalization by the steady-state limits, these moment c.d.f.&s (cumulative distribution functions) coincide with gamma mixtures of inverse Gaussian c.d.f.&s. The first moment c.d.f. thus coincides with the first-passage time to the origin starting in steady state with the exponential stationary distribution. From this probabilistic characterization, it follows that thekth-moment c.d.f is thek-fold convolution of the first-moment c.d.f. As a consequence, it is easy to see that the (k +1)th moment approaches its steady-state limit more slowly than thekthmoment. It is also easy to derive the asymptotic behavior ast→∞. The first two moment c.d.f.&s have completely monotone densities, supporting approximation by hyperexponential (H2)c.d.f.&s (mixtures of two exponentials). TheH2approximations provide easily comprehensible descriptions of the first two moment c.d.f.&s suitable for practical purposes. The two exponential components of theH2approximation yield simple exponential approximations in different regimes. On the other hand, numerical comparisons show that the limit related to the relaxation time does not predict the approach to steady state especially well in regions of primary interest. In Part II (Abate and Whitt (1987a)), moments of RBM with non-zero initial conditions are treated by representing them as the difference of two increasing functions, one of which is the moment function starting at the origin studied here.

1987 ◽  
Vol 19 (3) ◽  
pp. 560-598 ◽  
Author(s):  
Joseph Abate ◽  
Ward Whitt

A natural model for stochastic flow systems is regulated or reflecting Brownian motion (RBM), which is Brownian motion on the positive real line with constant negative drift and constant diffusion coefficient, modified by an impenetrable reflecting barrier at the origin. As a basis for understanding how stochastic flow systems approach steady state, this paper provides relatively simple descriptions of the moments of RBM as functions of time. In Part I attention is restricted to the case in which RBM starts at the origin; then the moment functions are increasing. After normalization by the steady-state limits, these moment c.d.f.&s (cumulative distribution functions) coincide with gamma mixtures of inverse Gaussian c.d.f.&s. The first moment c.d.f. thus coincides with the first-passage time to the origin starting in steady state with the exponential stationary distribution. From this probabilistic characterization, it follows that the kth-moment c.d.f is the k-fold convolution of the first-moment c.d.f. As a consequence, it is easy to see that the (k + 1)th moment approaches its steady-state limit more slowly than the kth moment. It is also easy to derive the asymptotic behavior as t →∞. The first two moment c.d.f.&s have completely monotone densities, supporting approximation by hyperexponential (H2) c.d.f.&s (mixtures of two exponentials). The H2 approximations provide easily comprehensible descriptions of the first two moment c.d.f.&s suitable for practical purposes. The two exponential components of the H2 approximation yield simple exponential approximations in different regimes. On the other hand, numerical comparisons show that the limit related to the relaxation time does not predict the approach to steady state especially well in regions of primary interest. In Part II (Abate and Whitt (1987a)), moments of RBM with non-zero initial conditions are treated by representing them as the difference of two increasing functions, one of which is the moment function starting at the origin studied here.


Author(s):  
J. F. C. Kingman ◽  
J. Michael Harrison

1987 ◽  
Vol 19 (3) ◽  
pp. 599-631 ◽  
Author(s):  
Joseph Abate ◽  
Ward Whitt

This paper continues an investigation of the time-dependent behavior of regulated or reflecting Brownian motion (RBM). Part I focused on RBM starting at the origin; Part II focuses on RBM starting at a fixed positive state. The first two moments of RBM as functions of time are analyzed by representing them as the difference of two increasing functions, one of which is the moment function starting at the origin studied in Part I. By appropriate normalization, the two monotone components can be converted into cumulative distribution functions that can be analyzed probabilistically, e.g., their moments can be calculated. Simple approximations are then developed by fitting convenient distributions to these moments. Overall, the analysis yields a better understanding of the way RBM and related stochastic flow systems approach steady state.


1987 ◽  
Vol 19 (03) ◽  
pp. 599-631 ◽  
Author(s):  
Joseph Abate ◽  
Ward Whitt

This paper continues an investigation of the time-dependent behavior of regulated or reflecting Brownian motion (RBM). Part I focused on RBM starting at the origin; Part II focuses on RBM starting at a fixed positive state. The first two moments of RBM as functions of time are analyzed by representing them as the difference of two increasing functions, one of which is the moment function starting at the origin studied in Part I. By appropriate normalization, the two monotone components can be converted into cumulative distribution functions that can be analyzed probabilistically, e.g., their moments can be calculated. Simple approximations are then developed by fitting convenient distributions to these moments. Overall, the analysis yields a better understanding of the way RBM and related stochastic flow systems approach steady state.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 956
Author(s):  
Elvira Di Nardo ◽  
Giuseppe D’Onofrio

We consider the problem of the first passage time T of an inhomogeneous geometric Brownian motion through a constant threshold, for which only limited results are available in the literature. In the case of a strong positive drift, we get an approximation of the cumulants of T of any order using the algebra of formal power series applied to an asymptotic expansion of its Laplace transform. The interest in the cumulants is due to their connection with moments and the accounting of some statistical properties of the density of T like skewness and kurtosis. Some case studies coming from neuronal modeling with reversal potential and mean reversion models of financial markets show the goodness of the approximation of the first moment of T. However hints on the evaluation of higher order moments are also given, together with considerations on the numerical performance of the method.


SIAM Review ◽  
1986 ◽  
Vol 28 (3) ◽  
pp. 424-426
Author(s):  
Frank B. Knight

1985 ◽  
Vol 17 (2-3) ◽  
pp. 303-311
Author(s):  
Kees de Korte ◽  
Peter Smits

The usual method for OC measurement is the non-steady state method (reaeration) in tapwater or, sometimes, in activated sludge. Both methods are more or less difficult and expensive. The steady state method with activated sludge is presented. Fundamentals are discussed. For complete mixed aeration tanks, plug flow systems with diffused air aeration and carousels the method is described more in detail and the results of measurements are presented. The results of the steady state measurements of the diffused air system are compared with those of the reaeration method in tapwater. The accuracy of the measurements in the 3 systems is discussed. Measurements in other aeration systems are described briefly. It is concluded that the steady state OC measurement offers advantages in comparison with the non-steady state method and is useful for most purposes.


2009 ◽  
Vol 46 (1) ◽  
pp. 181-198 ◽  
Author(s):  
T. R. Hurd ◽  
A. Kuznetsov

In this paper we consider the class of Lévy processes that can be written as a Brownian motion time changed by an independent Lévy subordinator. Examples in this class include the variance-gamma (VG) model, the normal-inverse Gaussian model, and other processes popular in financial modeling. The question addressed is the precise relation between the standard first passage time and an alternative notion, which we call the first passage of the second kind, as suggested by Hurd (2007) and others. We are able to prove that the standard first passage time is the almost-sure limit of iterations of the first passage of the second kind. Many different problems arising in financial mathematics are posed as first passage problems, and motivated by this fact, we are led to consider the implications of the approximation scheme for fast numerical methods for computing first passage. We find that the generic form of the iteration can be competitive with other numerical techniques. In the particular case of the VG model, the scheme can be further refined to give very fast algorithms.


Sign in / Sign up

Export Citation Format

Share Document