Linear least squares prediction in non-stochastic time series

1969 ◽  
Vol 1 (01) ◽  
pp. 111-122
Author(s):  
P. D. Finch

Many problems arising in the physical and social sciences relate to processes which happen sequentially. Such processes are usually investigated by means of the theory of stationary stochastic processes, but there have been some attempts to develop techniques which are not subject to the conceptual difficulties inherent in the probabilistic approach. These difficulties stem from the fact that in practice one is often restricted to a single record which, from the probabilistic point of view, is only one sample from an ensemble of possible records. In some instances such a viewpoint seems artificial, and for some time series it is questionable whether any objective reality corresponds to the idea of an ensemble of possible time series. For example, as noted in Feller (1967), a theory of probability based on a frequency interpretation cannot meaningfully attach a probability to a statement such as “the sun will rise tomorrow”, because to do so one would have to set up a conceptual universe of possible worlds.

1969 ◽  
Vol 1 (1) ◽  
pp. 111-122 ◽  
Author(s):  
P. D. Finch

Many problems arising in the physical and social sciences relate to processes which happen sequentially. Such processes are usually investigated by means of the theory of stationary stochastic processes, but there have been some attempts to develop techniques which are not subject to the conceptual difficulties inherent in the probabilistic approach. These difficulties stem from the fact that in practice one is often restricted to a single record which, from the probabilistic point of view, is only one sample from an ensemble of possible records. In some instances such a viewpoint seems artificial, and for some time series it is questionable whether any objective reality corresponds to the idea of an ensemble of possible time series. For example, as noted in Feller (1967), a theory of probability based on a frequency interpretation cannot meaningfully attach a probability to a statement such as “the sun will rise tomorrow”, because to do so one would have to set up a conceptual universe of possible worlds.


2001 ◽  
Vol 7 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Yulia R. Gel ◽  
Vladimir N. Fomin

Usually the coefficients in a stochastic time series model are partially or entirely unknown when the realization of the time series is observed. Sometimes the unknown coefficients can be estimated from the realization with the required accuracy. That will eventually allow optimizing the data handling of the stochastic time series.Here it is shown that the recurrent least-squares (LS) procedure provides strongly consistent estimates for a linear autoregressive (AR) equation of infinite order obtained from a minimal phase regressive (ARMA) equation. The LS identification algorithm is accomplished by the Padé approximation used for the estimation of the unknown ARMA parameters.


1998 ◽  
Vol 10 (3) ◽  
pp. 731-747 ◽  
Author(s):  
Volker Tresp ◽  
Reimar Hofmann

We derive solutions for the problem of missing and noisy data in nonlinear time-series prediction from a probabilistic point of view. We discuss different approximations to the solutions—in particular, approximations that require either stochastic simulation or the substitution of a single estimate for the missing data. We show experimentally that commonly used heuristics can lead to suboptimal solutions. We show how error bars for the predictions can be derived and how our results can be applied to K-step prediction. We verify our solutions using two chaotic time series and the sunspot data set. In particular, we show that for K-step prediction, stochastic simulation is superior to simply iterating the predictor.


Author(s):  
Santo Banerjee ◽  
M K Hassan ◽  
Sayan Mukherjee ◽  
A Gowrisankar

2011 ◽  
pp. 130-153 ◽  
Author(s):  
Toshio Tsuji ◽  
Nan Bu ◽  
Osamu Fukuda

In the field of pattern recognition, probabilistic neural networks (PNNs) have been proven as an important classifier. For pattern recognition of EMG signals, the characteristics usually used are: (1) amplitude, (2) frequency, and (3) space. However, significant temporal characteristic exists in the transient and non-stationary EMG signals, which cannot be considered by traditional PNNs. In this article, a recurrent PNN, called recurrent log-linearized Gaussian mixture network (R-LLGMN), is introduced for EMG pattern recognition, with the emphasis on utilizing temporal characteristics. The structure of R-LLGMN is based on the algorithm of a hidden Markov model (HMM), which is a routinely used technique for modeling stochastic time series. Since R-LLGMN inherits advantages from both HMM and neural computation, it is expected to have higher representation ability and show better performance when dealing with time series like EMG signals. Experimental results show that R-LLGMN can achieve high discriminant accuracy in EMG pattern recognition.


Sign in / Sign up

Export Citation Format

Share Document