Development and validation of an efficient direct numerical optimisation approach for aerofoil shape design

2010 ◽  
Vol 114 (1160) ◽  
pp. 611-628 ◽  
Author(s):  
M. Khurana ◽  
H. Winarto

Abstract Intelligent shape optimisation architecture is developed, validated and applied in the design of high-altitude long endurance aerofoil (HALE). The direct numeric optimisation (DNO) approach integrating a geometrical shape parameterisation model coupled to a validated flow solver and a population based search algorithm are applied in the design process. The merit of the DNO methodology is measured by computational time efficiency and feasibility of the optimal solution. Gradient based optimisers are not suitable for multi-modal solution topologies. Thus, a novel particle swarm optimiser with adaptive mutation (AM-PSO) is developed. The effect of applying the PARSEC and a modified variant of the original function, as a shape parameterisation model on the global optimal is verified. Optimisation efficiency is addressed by mapping the solution topology for HALE aerofoil designs and by computing the sensitivity of aerofoil shape variables on the objective function. Variables with minimal influence are identified and eliminated from shape optimisation simulations. Variable elimination has a negligible effect on the aerodynamics of the global optima, with a significant reduction in design iterations to convergence. A novel data-mining technique is further applied to verify the accuracy of the AM-PSO solutions. The post-processing analysis, to swarm optimisation solutions, indicates a hybrid optimisation methodology with the integration of global and local gradient based search methods, yields a true optima. The findings are consistent for single and multi-point designs.

Biometrics ◽  
2017 ◽  
pp. 1543-1561 ◽  
Author(s):  
Mrutyunjaya Panda ◽  
Aboul Ella Hassanien ◽  
Ajith Abraham

Evolutionary harmony search algorithm is used for its capability in finding solution space both locally and globally. In contrast, Wavelet based feature selection, for its ability to provide localized frequency information about a function of a signal, makes it a promising one for efficient classification. Research in this direction states that wavelet based neural network may be trapped to fall in a local minima whereas fuzzy harmony search based algorithm effectively addresses that problem and able to get a near optimal solution. In this, a hybrid wavelet based radial basis function (RBF) neural network (WRBF) and feature subset harmony search based fuzzy discernibility classifier (HSFD) approaches are proposed as a data mining technique for image segmentation based classification. In this paper, the authors use Lena RGB image; Magnetic resonance image (MR) and Computed Tomography (CT) Image for analysis. It is observed from the obtained simulation results that Wavelet based RBF neural network outperforms the harmony search based fuzzy discernibility classifiers.


2017 ◽  
Vol 8 (3) ◽  
pp. 1-23 ◽  
Author(s):  
Ghanshyam Tejani ◽  
Vimal Savsani ◽  
Vivek Patel

In this study, a modified heat transfer search (MHTS) algorithm is proposed by incorporating sub-population based simultaneous heat transfer modes viz. conduction, convection, and radiation in the basic HTS algorithm. However, the basic HTS algorithm considers only one of the modes of heat transfer for each generation. The multiple natural frequency constraints in truss optimization problems can improve the dynamic behavior of the structure and prevent undesirable vibrations. However, shape and size variables subjected to frequency constraints are difficult to handle due to the complexity of its feasible region, which is non-linear, non-convex, implicit, and often converging to the local optimal solution. The viability and effectiveness of the HTS and MHTS algorithms are investigated by six standard trusses problems. The solutions illustrate that the MHTS algorithm performs better than the HTS algorithm.


2021 ◽  
Vol 9 (3-4) ◽  
pp. 89-99
Author(s):  
Ivona Brajević ◽  
Miodrag Brzaković ◽  
Goran Jocić

Beetle antennae search (BAS) algorithm is a newly proposed single-solution based metaheuristic technique inspired by the beetle preying process. Although BAS algorithm has shown good search abilities, it can be easily trapped into local optimum when it is used to solve hard optimization problems. With the intention to overcome this drawback, this paper presents a population-based beetle antennae search (PBAS) algorithm for solving integer programming problems.  This method employs the population's capability to search diverse regions of the search space to provide better guarantee for finding the optimal solution. The PBAS method was tested on nine integer programming problems and one mechanical design problem. The proposed algorithm was compared to other state-of-the-art metaheuristic techniques. The comparisons show that the proposed PBAS algorithm produces better results for majority of tested problems.  


Author(s):  
Kanagasabai Lenin

In this work Predestination of Particles Wavering Search (PPS) algorithm has been applied to solve optimal reactive power problem. PPS algorithm has been modeled based on the motion of the particles in the exploration space. Normally the movement of the particle is based on gradient and swarming motion.  Particles are permitted to progress in steady velocity in gradient-based progress, but when the outcome is poor when compared to previous upshot, immediately particle rapidity will be upturned with semi of the magnitude and it will help to reach local optimal solution and it is expressed as wavering movement. In standard IEEE 14, 30, 57,118,300 bus systems Proposed Predestination of Particles Wavering Search (PPS) algorithm is evaluated and simulation results show the PPS reduced the power loss efficiently.


Author(s):  
Ashok Bhoi ◽  
Ranjan Kumar Mallick ◽  
Gayadhar Panda ◽  
Pravati Nayak

Abstract This paper purposes a new type of hybrid technique depends on lightning search algorithm (LSA) and recursive least square (RLS) named as LSA-RLS to overcome the harmonic estimation issues in time varying modern power system signals buried with noises. LSA is based on a natural phenomenon of lightning. It consists of three types of projectiles: transition, space and lead projectiles. Transition projectiles create population, space projectiles do the exploration and the lead projectiles do the work of exploitation and find the optimal solution. The basic LSA algorithm is mixed with RLS algorithm in an adaptive way to estimate the states of the harmonic signals. Simulation and validation are made with real time data obtained from a converter fed D.C motor drive. The efficacy of the proposed algorithm is verified by comparing the simulation results of recently reported algorithms such as particle swarm optimization (PSO), differential evolution (DE), bacteria foraging optimization (BFO), gravity search algorithm hybridized recursive least square method (GSA-RLS). It is verified that proposed (LSA-RLS) technique is the best in terms of computational time, convergence, accuracy.


2018 ◽  
pp. 1-30 ◽  
Author(s):  
Alireza Askarzadeh ◽  
Esmat Rashedi

Harmony search (HS) is a meta-heuristic search algorithm which tries to mimic the improvisation process of musicians in finding a pleasing harmony. In recent years, due to some advantages, HS has received a significant attention. HS is easy to implement, converges quickly to the optimal solution and finds a good enough solution in a reasonable amount of computational time. The merits of HS algorithm have led to its application to optimization problems of different engineering areas. In this chapter, the concepts and performance of HS algorithm are shown and some engineering applications are reviewed. It is observed that HS has shown promising performance in solving difficult optimization problems and different versions of this algorithm have been developed. In the next years, it is expected that HS is applied to more real optimization problems.


Author(s):  
Cecília Reis ◽  
◽  
J. A. Tenreiro Machado

This paper is devoted to the synthesis of combinational logic circuits through computational intelligence or, more precisely, using evolutionary computation techniques. Are studied two evolutionary algorithms, the Genetic and the Memetic Algorithm (GAs, MAs) and one swarm intelligence algorithm, the Particle Swarm Optimization (PSO). GAs are optimization and search techniques based on the principles of genetics and natural selection. MAs are evolutionary algorithms that include a stage of individual optimization as part of its search strategy, being the individual optimization in the form of a local search. The PSO is a population-based search algorithm that starts with a population of random solutions called particles. This paper presents the results for digital circuits design using the three above algorithms. The results show the statistical characteristics of this algorithms with respect to the number of generations required to achieve the solutions. The article analyzes also a new fitness function that includes an error discontinuity measure, which demonstrated to improve significantly the performance of the algorithm.


2021 ◽  
Vol 9 (3-4) ◽  
pp. 89-99
Author(s):  
Ivona Brajević ◽  
Miodrag Brzaković ◽  
Goran Jocić

Beetle antennae search (BAS) algorithm is a newly proposed single-solution based metaheuristic technique inspired by the beetle preying process. Although BAS algorithm has shown good search abilities, it can be easily trapped into local optimum when it is used to solve hard optimization problems. With the intention to overcome this drawback, this paper presents a population-based beetle antennae search (PBAS) algorithm for solving integer programming problems. This method employs the population's capability to search diverse regions of the search space to provide better guarantee for finding the optimal solution. The PBAS method was tested on nine integer programming problems and one mechanical design problem. The proposed algorithm was compared to other state-of-the-art metaheuristic techniques. The comparisons show that the proposed PBAS algorithm produces better results for majority of tested problems.


Author(s):  
Afshin Ghanbarzadeh

This paper presents an application of the Bees Algorithm (BA) to the optimisation of weights within neural networks for wood defect detection. This novel population-based search algorithm mimics the natural foraging behaviour of swarms of bees. In its basic version, the algorithm performs a kind of neighbourhood search combined with random search. Following a brief description of the algorithm, the paper gives the results obtained for the wood defect identification problem demonstrating the efficiency and robustness of the new algorithm.


Sign in / Sign up

Export Citation Format

Share Document