population based search
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Benjamin Evans

<p>Ensemble learning is one of the most powerful extensions for improving upon individual machine learning models. Rather than a single model being used, several models are trained and the predictions combined to make a more informed decision. Such combinations will ideally overcome the shortcomings of any individual member of the ensemble. Most ma- chine learning competition winners feature an ensemble of some sort, and there is also sound theoretical proof to the performance of certain ensem- bling schemes. The benefits of ensembling are clear in both theory and practice.  Despite the great performance, ensemble learning is not a trivial task. One of the main difficulties is designing appropriate ensembles. For exam- ple, how large should an ensemble be? What members should be included in an ensemble? How should these members be weighted? Our first contribution addresses these concerns using a strongly-typed population- based search (genetic programming) to construct well-performing ensem- bles, where the entire ensemble (members, hyperparameters, structure) is automatically learnt. The proposed method was found, in general, to be significantly better than all base members and commonly used compari- son methods trialled.  With automatically designed ensembles, there is a range of applica- tions, such as competition entries, forecasting and state-of-the-art predic- tions. However, often these applications also require additional prepro- cessing of the input data. Above the ensemble considers only the original training data, however, in many machine learning scenarios a pipeline is required (for example performing feature selection before classification). For the second contribution, a novel automated machine learning method is proposed based on ensemble learning. This method uses a random population-based search of appropriate tree structures, and as such is em- barrassingly parallel, an important consideration for automated machine learning. The proposed method is able to achieve equivalent or improved results over the current state-of-the-art methods and does so in a fraction of the time (six times as fast).  Finally, while complex ensembles offer great performance, one large limitation is the interpretability of such ensembles. For example, why does a forest of 500 trees predict a particular class for a given instance? In an effort to explain the behaviour of complex models (such as ensem- bles), several methods have been proposed. However, these approaches tend to suffer at least one of the following limitations: overly complex in the representation, local in their application, limited to particular fea- ture types (i.e. categorical only), or limited to particular algorithms. For our third contribution, a novel model agnostic method for interpreting complex black-box machine learning models is proposed. The method is based on strongly-typed genetic programming and overcomes the afore- mentioned limitations. Multi-objective optimisation is used to generate a Pareto frontier of simple and explainable models which approximate the behaviour of much more complex methods. We found the resulting rep- resentations are far simpler than existing approaches (an important con- sideration for interpretability) while providing equivalent reconstruction performance.  Overall, this thesis addresses two of the major limitations of existing ensemble learning, i.e. the complex construction process and the black- box models that are often difficult to interpret. A novel application of ensemble learning in the field of automated machine learning is also pro- posed. All three methods have shown at least equivalent or improved performance than existing methods.</p>


2021 ◽  
Author(s):  
◽  
Benjamin Evans

<p>Ensemble learning is one of the most powerful extensions for improving upon individual machine learning models. Rather than a single model being used, several models are trained and the predictions combined to make a more informed decision. Such combinations will ideally overcome the shortcomings of any individual member of the ensemble. Most ma- chine learning competition winners feature an ensemble of some sort, and there is also sound theoretical proof to the performance of certain ensem- bling schemes. The benefits of ensembling are clear in both theory and practice.  Despite the great performance, ensemble learning is not a trivial task. One of the main difficulties is designing appropriate ensembles. For exam- ple, how large should an ensemble be? What members should be included in an ensemble? How should these members be weighted? Our first contribution addresses these concerns using a strongly-typed population- based search (genetic programming) to construct well-performing ensem- bles, where the entire ensemble (members, hyperparameters, structure) is automatically learnt. The proposed method was found, in general, to be significantly better than all base members and commonly used compari- son methods trialled.  With automatically designed ensembles, there is a range of applica- tions, such as competition entries, forecasting and state-of-the-art predic- tions. However, often these applications also require additional prepro- cessing of the input data. Above the ensemble considers only the original training data, however, in many machine learning scenarios a pipeline is required (for example performing feature selection before classification). For the second contribution, a novel automated machine learning method is proposed based on ensemble learning. This method uses a random population-based search of appropriate tree structures, and as such is em- barrassingly parallel, an important consideration for automated machine learning. The proposed method is able to achieve equivalent or improved results over the current state-of-the-art methods and does so in a fraction of the time (six times as fast).  Finally, while complex ensembles offer great performance, one large limitation is the interpretability of such ensembles. For example, why does a forest of 500 trees predict a particular class for a given instance? In an effort to explain the behaviour of complex models (such as ensem- bles), several methods have been proposed. However, these approaches tend to suffer at least one of the following limitations: overly complex in the representation, local in their application, limited to particular fea- ture types (i.e. categorical only), or limited to particular algorithms. For our third contribution, a novel model agnostic method for interpreting complex black-box machine learning models is proposed. The method is based on strongly-typed genetic programming and overcomes the afore- mentioned limitations. Multi-objective optimisation is used to generate a Pareto frontier of simple and explainable models which approximate the behaviour of much more complex methods. We found the resulting rep- resentations are far simpler than existing approaches (an important con- sideration for interpretability) while providing equivalent reconstruction performance.  Overall, this thesis addresses two of the major limitations of existing ensemble learning, i.e. the complex construction process and the black- box models that are often difficult to interpret. A novel application of ensemble learning in the field of automated machine learning is also pro- posed. All three methods have shown at least equivalent or improved performance than existing methods.</p>


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7499
Author(s):  
Xiaolong Zheng ◽  
Deyun Zhou ◽  
Na Li ◽  
Tao Wu ◽  
Yu Lei ◽  
...  

Population based search techniques have been developed and applied to wide applications for their good performance, such as the optimization of the unmanned aerial vehicle (UAV) path planning problems. However, the search for optimal solutions for an optimization problem is usually expensive. For example, the UAV problem is a large-scale optimization problem with many constraints, which makes it hard to get exact solutions. Especially, it will be time-consuming when multiple UAV problems are waiting to be optimized at the same time. Evolutionary multi-task optimization (EMTO) studies the problem of utilizing the population-based characteristics of evolutionary computation techniques to optimize multiple optimization problems simultaneously, for the purpose of further improving the overall performance of resolving all these problems. EMTO has great potential in solving real-world problems more efficiently. Therefore, in this paper, we develop a novel EMTO algorithm using a classical PSO algorithm, in which the developed knowledge transfer strategy achieves knowledge transfer between task by synthesizing the transferred knowledges from a selected set of component tasks during the updating of the velocities of population. Two knowledge transfer strategies are developed along with two versions of the proposed algorithm. The proposed algorithm is compared with the multifactorial PSO algorithm, the SREMTO algorithm, the popular multifactorial evolutionary algorithm and a classical PSO algorithm on nine popular single-objective MTO problems and six five-task MTO problems, which demonstrates its superiority.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2606
Author(s):  
Cătălina Lucia COCIANU ◽  
Cristian Răzvan USCATU

The paper presents a new memetic, cluster-based methodology for image registration in case of geometric perturbation model involving translation, rotation and scaling. The methodology consists of two stages. First, using the sets of the object pixels belonging to the target image and to the sensed image respectively, the boundaries of the search space are computed. Next, the registration mechanism residing in a hybridization between a version of firefly population-based search procedure and the two membered evolutionary strategy computed on clustered data is applied. In addition, a procedure designed to deal with the premature convergence problem is embedded. The fitness to be maximized by the memetic algorithm is defined by the Dice coefficient, a function implemented to evaluate the similarity between pairs of binary images. The proposed methodology is applied on both binary and monochrome images. In case of monochrome images, a preprocessing step aiming the binarization of the inputs is considered before the registration. The quality of the proposed approach is measured in terms of accuracy and efficiency. The success rate based on Dice coefficient, normalized mutual information measures, and signal-to-noise ratio are used to establish the accuracy of the obtained algorithm, while the efficiency is evaluated by the run time function.


Author(s):  
Dr. K. Santhi ◽  
Dr. V. Vinodhini

Genetic Algorithms are the population based search and optimization technique that mimic the process of Genetic and Natural Evolution. Genetic algorithms are very effective way of finding an Optimized solution to a complex problem. Performance of genetic algorithms mainly depends on various factors such as selection of efficient parents and type of genetic operators which involve crossover and mutation operators etc. This paper will help the people to acquire the knowledge about various strategies of selecting parents and description about standard crossover operators.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 881
Author(s):  
Catalina-Lucia Cocianu ◽  
Alexandru Daniel Stan ◽  
Mihai Avramescu

The main aim of the reported work is to solve the registration problem for recognition purposes. We introduce two new evolutionary algorithms (EA) consisting of population-based search methods, followed by or combined with a local search scheme. We used a variant of the Firefly algorithm to conduct the population-based search, while the local exploration was implemented by the Two-Membered Evolutionary Strategy (2M-ES). Both algorithms use fitness function based on mutual information (MI) to direct the exploration toward an appropriate candidate solution. A good similarity measure is the one that enables us to predict well, and with the symmetric MI we tie similarity between two objects A and B directly to how well A predicts B, and vice versa. Since the search landscape of normalized mutual information proved more amenable for evolutionary computation algorithms than simple MI, we use normalized mutual information (NMI) defined as symmetric uncertainty. The proposed algorithms are tested against the well-known Principal Axes Transformation technique (PAT), a standard evolutionary strategy and a version of the Firefly algorithm developed to align images. The accuracy and the efficiency of the proposed algorithms are experimentally confirmed by our tests, both methods being excellently fitted to registering images.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4834
Author(s):  
Rubén Crespo-Cano ◽  
Sergio Cuenca-Asensi ◽  
Eduardo Fernández ◽  
Martínez-Álvarez

A significant challenge in neuroscience is understanding how visual information is encoded in the retina. Such knowledge is extremely important for the purpose of designing bioinspired sensors and artificial retinal systems that will, in so far as may be possible, be capable of mimicking vertebrate retinal behaviour. In this study, we report the tuning of a reliable computational bioinspired retinal model with various algorithms to improve the mimicry of the model. Its main contribution is two-fold. First, given the multi-objective nature of the problem, an automatic multi-objective optimisation strategy is proposed through the use of four biological-based metrics, which are used to adjust the retinal model for accurate prediction of retinal ganglion cell responses. Second, a subset of population-based search heuristics—genetic algorithms (SPEA2, NSGA-II and NSGA-III), particle swarm optimisation (PSO) and differential evolution (DE)—are explored to identify the best algorithm for fine-tuning the retinal model, by comparing performance across a hypervolume metric. Nonparametric statistical tests are used to perform a rigorous comparison between all the metaheuristics. The best results were achieved with the PSO algorithm on the basis of the largest hypervolume that was achieved, well-distributed elements and high numbers on the Pareto front.


2019 ◽  
Vol 9 (1) ◽  
pp. 33-49
Author(s):  
Charu Gupta ◽  
Amita Jain ◽  
Nisheeth Joshi

Today, amongst the various forms of online data, user reviews are very useful in understanding the user's attitude, emotion and sentiment towards a product. In this article, a novel method, named as DE-ForABSA is proposed to forecast automobiles sales based on aspect based sentiment analysis (ABSA) and ClusFuDE [8] (a hybrid forecasting model). DE-ForABSA consists of two phases – first, extracted user reviews of an automobile are analysed using ABSA. In ABSA, the reviews are pre-processed; aspects are extracted & aggregated to determine the polarity score of reviews. Second, uses of ClusFuDE consisting of clustering, fuzzy logical relationships and Differential Evolution (DE) to predict the sales of the automobile. DE is a population-based search method to optimize real values under the control of two operators: mutation & crossover. Score from phase 1 is a parameter in differential mutation in phase 2. The proposed method is tested on reviews & sales data of automobile. The empirical results show a Mean Square Error of 142.90 which indicates an effective consistency of the model


Sign in / Sign up

Export Citation Format

Share Document