scholarly journals On Stieltjes-Volterra integral equations

1978 ◽  
Vol 18 (3) ◽  
pp. 321-334 ◽  
Author(s):  
S.G. Pandit

A Stieltjes-Volterra integral equation systemis firstly considered. Pointwise estimates and boundedness of its solutions are obtained under various conditions on the function K. To do this, the well-known Gronwall-Bellman integral inequality is generalized. For a particular choice of u, it is shown that the integral equation reduces to a difference equation. The problem of existence (and non-existence), uniqueness (and non-uniqueness) of the difference equation is discussed. Gronwall-Bellman inequality is further generalized to n linear terms and is subsequently applied to obtain sufficient conditions in order that a certain stability of the unperturbed Volterra systemimplies the corresponding local stability of the (discontinuously) perturbed system

Author(s):  
H. A. Heilbronn

A function f(x1, x2) of two real variables x1, x2 which are restricted to rational integers will be called discrete harmonic (d.h.) if it satisfies the difference equationThis equation can be considered as the direct analogue either of the differential equationor of the integral equationin the notation normally employed to harmonic functions.


1974 ◽  
Vol 17 (1) ◽  
pp. 77-83
Author(s):  
Edward Moore

Vasil’eva, [2], demonstrates a close connection between the explicit formulae for solutions to the linear difference equation with constant coefficients(1.1)where z is an n-vector, A an n×n constant matrix, τ>0, and a corresponding differential equation with constant coefficients(1.2)(1.2) is obtained from (1.1) by replacing the difference z(t—τ) by the first two terms of its Taylor Series expansion, combined with a suitable rearrangement of the terms.


1969 ◽  
Vol 16 (3) ◽  
pp. 185-194 ◽  
Author(s):  
V. Hutson

Consider the Fredholm equation of the second kindwhereand Jv is the Bessel function of the first kind. Here ka(t) and h(x) are given, the unknown function is f(x), and the solution is required for large values of the real parameter a. Under reasonable conditions the solution of (1.1) is given by its Neumann series (a set of sufficient conditions on ka(t) for the convergence of this series is given in Section 4, Lemma 2). However, in many applications the convergence of the series becomes too slow as a→∞ for any useful results to be obtained from it, and it may even happen that f(x)→∞ as a→∞. It is the aim of the present investigation to consider this case, and to show how under fairly general conditions on ka(t) an approximate solution may be obtained for large a, the approximation being valid in the norm of L2(0, 1). The exact conditions on ka(t) and the main result are given in Section 4. Roughly, it is required that 1 -ka(at) should behave like tp(p>0) as t→0. For example, ka(at) might be exp ⌈-(t/ap)⌉.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
E. J. Janowski ◽  
M. R. S. Kulenović

Consider the difference equationxn+1=f(xn,…,xn−k),n=0,1,…,wherek∈{1,2,…}and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equationxn+l=∑i=1−lkgixn−i,n=0,1,…,wherel,k∈{1,2,…}and the functionsgi:ℝk+l→ℝ. We give some necessary and sufficient conditions for the equation to have a minimal period-two solution whenl=1.


2001 ◽  
Vol 42 (3) ◽  
pp. 399-412
Author(s):  
J. R. Christie ◽  
K. Gopalsamy ◽  
Jibin Li

AbstractLotka-Volterra systems have been used extensively in modelling population dynamics. In this paper, it is shown that chaotic behaviour in the sense of Smale can exist in timeperiodically perturbed systems of Lotka-Volterra equations. First, a slowly varying threedimensional perturbed Lotka-Volterra system is considered and the corresponding unperturbed system is shown to possess a heteroclinic cycle. By using Melnikov's method, sufficient conditions are obtained for the perturbed system to have a transverse heteroclinic cycle and hence to possess chaotic behaviour in the sense of Smale. Then a special case involving a reduction to a two-dimensional Lotka-Volterra system is examined, leading finally to an application with a model for the self-organisation of macromolecules.


1937 ◽  
Vol 30 ◽  
pp. vi-x
Author(s):  
C. G. Darwin

1. If the approximate numerical value of e is expressed as a continued fraction the result isand it was in finding the proof that the sequence extends correctly to infinity that the following work was done. First the continued fraction may be simplified by setting down the difference equations for numerator and denominator as usual, and eliminating two out of every successive three equations. A difference equation is thus formed between the first, fourth, seventh, tenth … convergents , and this equation will generate another continued fraction. After a little rearrangement of the first two members it appears that (1) implies2. We therefore consider the continued fractionwhich includes (2), and also certain continued fractions which were discussed by Prof. Turnbull. He evaluated them without solving the difference equations, and it is the purpose here to show how the difference equations may be solved completely both in his cases and in the different problem of (2). It will appear that the work is connected with certain types of hypergeometric function, but I shall not go into this deeply.


1992 ◽  
Vol 35 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Ch. G. Philos

Consider the nonautonomous delay logistic difference equationwhere (pn)n≧0 is a sequence of nonnegative numbers, (ln)n≧0 is a sequence of positive integers with limn→∞(n−ln) = ∞ and K is a positive constant. Only solutions which are positive for n≧0 are considered. We established a sharp condition under which all solutions of (E0) are oscillatory about the equilibrium point K. Also we obtained sufficient conditions for the existence of a solution of (E0) which is nonoscillatory about K.


1917 ◽  
Vol 36 ◽  
pp. 40-60
Author(s):  
Eleanor Pairman

In 1730 there was published Stirling's Methodus Differentialis, and in it (Prop. VIII., p. 44) he considers the Difference Equationand shows that it is satisfied by an inverse factorial series


2017 ◽  
Vol 14 (1) ◽  
pp. 306-313
Author(s):  
Awad. A Bakery ◽  
Afaf. R. Abou Elmatty

We give here the sufficient conditions on the positive solutions of the difference equation xn+1 = α+M((xn−1)/xn), n = 0, 1, …, where M is an Orlicz function, α∈ (0, ∞) with arbitrary positive initials x−1, x0 to be bounded, α-convergent and the equilibrium point to be globally asymptotically stable. Finally we present the condition for which every positive solution converges to a prime two periodic solution. Our results coincide with that known for the cases M(x) = x in Ref. [3] and M(x) = xk, where k ∈ (0, ∞) in Ref. [7]. We have given the solution of open problem proposed in Ref. [7] about the existence of the positive solution which eventually alternates above and below equilibrium and converges to the equilibrium point. Some numerical examples with figures will be given to show our results.


Sign in / Sign up

Export Citation Format

Share Document