Linear geometries on the Moebius strip: A theorem of Skornyakov type

2005 ◽  
Vol 72 (1) ◽  
pp. 17-30
Author(s):  
Rainer Löwen ◽  
Burkard Polster

We show that the continuity properties of a stable plane are automatically satisfied if we have a linear space with point set a Moebius strip, provided that the lines are closed subsets homeomorphic to the real line or to the circle. In other words, existence of a unique line joining two distinct points implies continuity of join and intersection. For linear spaces with an open disk as point set, the same result was proved by Skornyakov.

2016 ◽  
Author(s):  
Daniel J Greenhoe

A traditional random variable X is a function that maps from a stochastic process to the real line (X,<=,d,+,.), where R is the set of real numbers, <= is the standard linear order relation on R, d(x,y)=|x-y| is the usual metric on R, and (R, +, .) is the standard field on R. Greenhoe(2015b) has demonstrated that this definition of random variable is often a poor choice for computing statistics when the stochastic process that X maps from has structure that is dissimilar to that of the real line. Greenhoe(2015b) has further proposed an alternative statistical system, that rather than mapping a stochastic process to the real line, instead maps to a weighted graph that has order and metric geometry structures similar to that of the underlying stochastic process. In particular, ideally the structure X maps from and the structure X maps to are, with respect to each other, both isomorphic and isometric.Mapping to a weighted graph is useful for analysis of a single random variable.for example the expectation EX of X can be defined simply as the center of its weighted graph. However, the mapping has limitations with regards to a sequence of random variables in performing sequence analysis (using for example Fourier analysis or wavelet analysis), in performing sequence processing (using for example FIR filtering or IIR filtering), in making diagnostic measurements (using a post-transform metric space), or in making goptimalh decisions (based on gdistanceh measurements in a metric space or more generally a distance space). Rather than mapping to a weighted graph, this paper proposes instead mapping to an ordered distance linear space Y=(R^n,<=,d,+,.,R,+,x), where (R,+,x) is a field, + is the vector addition operator on R^n x R^n, and . is the scalar-vector multiplication operator on R x R^n. The linear space component of Y provides a much more convenient (as compared to the weighted graph) framework for sequence analysis and processing. The ordered set and distance space components of Y allow one to preserve the order structure and distance geometry inherent in the underlying stochastic process, which in turn likely provides a less distorted (as compared to the real line) framework for analysis, diagnostics, and optimal decision making.


2016 ◽  
Author(s):  
Daniel J Greenhoe

A traditional random variable X is a function that maps from a stochastic process to the real line (X,<=,d,+,.), where R is the set of real numbers, <= is the standard linear order relation on R, d(x,y)=|x-y| is the usual metric on R, and (R, +, .) is the standard field on R. Greenhoe(2015b) has demonstrated that this definition of random variable is often a poor choice for computing statistics when the stochastic process that X maps from has structure that is dissimilar to that of the real line. Greenhoe(2015b) has further proposed an alternative statistical system, that rather than mapping a stochastic process to the real line, instead maps to a weighted graph that has order and metric geometry structures similar to that of the underlying stochastic process. In particular, ideally the structure X maps from and the structure X maps to are, with respect to each other, both isomorphic and isometric.Mapping to a weighted graph is useful for analysis of a single random variable.for example the expectation EX of X can be defined simply as the center of its weighted graph. However, the mapping has limitations with regards to a sequence of random variables in performing sequence analysis (using for example Fourier analysis or wavelet analysis), in performing sequence processing (using for example FIR filtering or IIR filtering), in making diagnostic measurements (using a post-transform metric space), or in making goptimalh decisions (based on gdistanceh measurements in a metric space or more generally a distance space). Rather than mapping to a weighted graph, this paper proposes instead mapping to an ordered distance linear space Y=(R^n,<=,d,+,.,R,+,x), where (R,+,x) is a field, + is the vector addition operator on R^n x R^n, and . is the scalar-vector multiplication operator on R x R^n. The linear space component of Y provides a much more convenient (as compared to the weighted graph) framework for sequence analysis and processing. The ordered set and distance space components of Y allow one to preserve the order structure and distance geometry inherent in the underlying stochastic process, which in turn likely provides a less distorted (as compared to the real line) framework for analysis, diagnostics, and optimal decision making.


1970 ◽  
Vol 13 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Helga Schirmer

A well known theorem by S. Banach states that a contractive function f: X → X on a complete metric space X has a fixed point, and that this fixed point is unique. This result has a partial extension to multi-functions: every contractive compact-valued multi-function on a complete metric space has a fixed point (see Definition 1 and Theorem 1 below). But simple examples show that this fixed point is no longer unique. We investigate some questions concerned with the properties of the fixed point set Φ of a contractive multi-function φ. Is, e.g., Φ connected if φ is connected-valued? Is Φ convex if φ is convex-valued? The answer is yes if X is the real line (§2), but examples in §3 and §4 show that in general the answer is no.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


2000 ◽  
Vol 26 (1) ◽  
pp. 237
Author(s):  
Duszyński
Keyword(s):  

1982 ◽  
Vol 8 (1) ◽  
pp. 67 ◽  
Author(s):  
Thomson
Keyword(s):  

2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.


Sign in / Sign up

Export Citation Format

Share Document