scholarly journals On τ-completely decomposable modules

2004 ◽  
Vol 70 (1) ◽  
pp. 163-175 ◽  
Author(s):  
Septimiu Crivei

For a hereditary torsion theory τ, a moduleAis called τ-completedly decomposable if it is a direct sum of modules that are the τ-injective hull of each of their non-zero submodules. We give a positive answer in several cases to the following generalised Matlis' problem: Is every direct summand of a τ-completely decomposable module still τ-completely decomposable? Secondly, for a commutative Noetherian ringRthat is not a domain, we determine those torsion theories with the property that every τ-injective module is an essential extension of a (τ-injective) τ-completely decomposable module.

2020 ◽  
Vol 72 (7) ◽  
pp. 960-970
Author(s):  
R. Tribak

UDC 512.5 Let R be a ring and let Ω R be the set of maximal right ideals of R . An R -module M is called an sd-Rickart module if for every nonzero endomorphism f of M , ℑ f is a fully invariant direct summand of M . We obtain a characterization for an arbitrary direct sum of sd-Rickart modules to be sd-Rickart. We also obtain a decomposition of an sd-Rickart R -module M , provided R is a commutative noetherian ring and A s s ( M ) ∩ Ω R is a finite set. In addition, we introduce and study ageneralization of sd-Rickart modules.


2007 ◽  
Vol 57 (4) ◽  
Author(s):  
Ladislav Bican

AbstractIn this note we are going to show that if M is a left module over a left noetherian ring R of the infinite cardinality λ ≥ |R|, then its injective hull E(M) is of the same size. Further, if M is an injective module with |M| ≥ (2λ)+ and K ≤ M is its submodule such that |M/K| ≤ λ, then K contains an injective submodule L with |M/L| ≤ 2λ. These results are applied to modules which are torsionfree with respect to a given hereditary torsion theory and generalize the results obtained by different methods in author’s previous papers: [A note on pure subgroups, Contributions to General Algebra 12. Proceedings of the Vienna Conference, June 3–6, 1999, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 105–107], [Pure subgroups, Math. Bohem. 126 (2001), 649–652].


1984 ◽  
Vol 25 (2) ◽  
pp. 219-227 ◽  
Author(s):  
J. Ahsan ◽  
E. Enochs

Throughout this paper it is assumed that rings are associative, have the identity element, and all modules are left unital. R will denote a ring with identity, R-Mod the category of left R-modules, and for each left R-module M, E(M) (resp. J(M)) will represent the injective hull (resp. Jacobson radical) of M. Also, for a module M, A ⊆' M will mean that A is an essential submodule of M, and Z(M) denotes the singular submodule of M. M is called singular if Z(M) = M, and it is called non-singular in case Z(M) = 0. For fundamental definitions and results related to torsion theories, we refer to [12] and [14]. In this paper we shall deal mainly with Goldie torsion theory. Recall that a pair (G, F) of classes of left R-modules is known as Goldie torsion theory if G is the smallest torsion class containing all modules B/A, where A ⊆' B, and the torsion free class F is precisely the class of non-singular modules.


1995 ◽  
Vol 52 (1) ◽  
pp. 107-116
Author(s):  
Yasuyuki Hirano ◽  
Dinh Van Huynh ◽  
Jae Keol Park

A module M is called a CS-module if every submodule of M is essential in a direct summand of M. It is shown that a ring R is semilocal if and only if every semiprimitive right R-module is CS. Furthermore, it is also shown that the following statements are equivalent for a ring R: (i) R is semiprimary and every right (or left) R-module is injective; (ii) every countably generated semiprimitive right R-module is a direct sum of a projective module and an injective module.


1976 ◽  
Vol 19 (1) ◽  
pp. 1-6 ◽  
Author(s):  
David Berry

R denotes an associative ring with identity. Module means unitary right R-module. A module has finite Goldie dimension over R if it does not contain an infinite direct sum of nonzero submodules [6]. We say R has finite (right) dimension if it has finite dimension as a right R-module. We denote the fact that M has finite dimension by dim (M)<∞.A nonzero submodule N of a module M is large in M if N has nontrivial intersection with nonzero submodules of M [7]. In this case M is called an essential extension of N. N⊆′M will denote N is essential (large) in M. If N has no proper essential extension in M, then N is closed in M. An injective essential extension of M, denoted I(M), is called the injective hull of M.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750049
Author(s):  
M. Tamer Koşan ◽  
Truong Cong Quynh

The aim of the present article is to investigate the structure of rings [Formula: see text] satisfying the condition: for any family [Formula: see text] of simple right [Formula: see text]-modules, every essential extension of [Formula: see text] is a direct sum of lifting modules, where [Formula: see text] denotes the injective hull. We show that every essential extension of [Formula: see text] is a direct sum of lifting modules if and only if [Formula: see text] is right Noetherian and [Formula: see text] is hollow. Assume that [Formula: see text] is an injective right [Formula: see text]-module with essential socle. We also prove that if every essential extension of [Formula: see text] is a direct sum of lifting modules, then [Formula: see text] is [Formula: see text]-injective. As a consequence of this observation, we show that [Formula: see text] is a right V-ring and every essential extension of [Formula: see text] is a direct sum of lifting modules for all simple modules [Formula: see text] if and only if [Formula: see text] is a right [Formula: see text]-V-ring.


2003 ◽  
Vol 40 (1-2) ◽  
pp. 33-40
Author(s):  
L. Fuchs

Injective modules are considered over commutative domains. It is shown that every injective module admits a decomposition into two summands, where one of the summands contains an essential submodule whose elements have divisorial annihilator ideals, while the other summand contains no element with divisorial annihilator. In the special case of Mori domains (i.e., the divisorial ideals satisfy the maximum condition), the first summand is a direct sum of a S-injective module and a module that has no such summand. The former is a direct sum of indecomposable injectives, while the latter is the injective hull of such a direct sum. Those Mori domains R are characterized for which the injective hull of Q/R is S-injective (Q denotes the field of quotients of R) as strong Mori domains, correcting a false claim in the literature.


1972 ◽  
Vol 7 (3) ◽  
pp. 387-389 ◽  
Author(s):  
Richard A. Levaro

It is shown that any sheaf of R˜-modules, all of whose stalks are injective, is necessarily a flabby sheaf. This generalizes the result or Grothendieck that the sheaf M˜ determined by an injective module M over a commutative noetherian ring with 1 is flabby.


Author(s):  
S. K. Jain ◽  
S. R. López-Permouth

AbstractA module M is said to be wealdy-injective if and only if for every finitely generated submodule N of the injective hull E(M) of M there exists a submodule X of E(M), isomorphic to M such that N ⊂ X. In this paper we investigate weakly-injective modules over bounded hereditary noetherian prime rings. In particular we show that torsion-free modules over bounded hnp rings are always wealdy-injective, while torsion modules with finite Goldie dimension are weakly-injective only if they are injective.As an application, we show that weakly-injective modules over bounded Dedekind prime rings have a decomposition as a direct sum of an injective module B, and a module C satisfying that if a simple module S is embeddable in C then the (external) direct sum of all proper submodules of the injective hull of S is also embeddable in C. Indeed, we show that over a bounded hereditary noetherian prime ring every uniform module has periodicity one if and only if every weakly-injective module has such a decomposition.


2005 ◽  
Vol 48 (2) ◽  
pp. 275-282
Author(s):  
Patrick F. Smith

AbstractLet R be a commutative Noetherian integral domain with field of fractions Q. Generalizing a forty-year-old theorem of E. Matlis, we prove that the R-module Q/R (or Q) has Krull dimension if and only if R is semilocal and one-dimensional. Moreover, if X is an injective module over a commutative Noetherian ring such that X has Krull dimension, then the Krull dimension of X is at most 1.


Sign in / Sign up

Export Citation Format

Share Document