scholarly journals Relative purity over noetherian rings

2007 ◽  
Vol 57 (4) ◽  
Author(s):  
Ladislav Bican

AbstractIn this note we are going to show that if M is a left module over a left noetherian ring R of the infinite cardinality λ ≥ |R|, then its injective hull E(M) is of the same size. Further, if M is an injective module with |M| ≥ (2λ)+ and K ≤ M is its submodule such that |M/K| ≤ λ, then K contains an injective submodule L with |M/L| ≤ 2λ. These results are applied to modules which are torsionfree with respect to a given hereditary torsion theory and generalize the results obtained by different methods in author’s previous papers: [A note on pure subgroups, Contributions to General Algebra 12. Proceedings of the Vienna Conference, June 3–6, 1999, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 105–107], [Pure subgroups, Math. Bohem. 126 (2001), 649–652].

2004 ◽  
Vol 70 (1) ◽  
pp. 163-175 ◽  
Author(s):  
Septimiu Crivei

For a hereditary torsion theory τ, a moduleAis called τ-completedly decomposable if it is a direct sum of modules that are the τ-injective hull of each of their non-zero submodules. We give a positive answer in several cases to the following generalised Matlis' problem: Is every direct summand of a τ-completely decomposable module still τ-completely decomposable? Secondly, for a commutative Noetherian ringRthat is not a domain, we determine those torsion theories with the property that every τ-injective module is an essential extension of a (τ-injective) τ-completely decomposable module.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050050 ◽  
Author(s):  
Yanjiong Yang ◽  
Xiaoguang Yan

In this paper, we study the conditions under which a module is a strict Mittag–Leffler module over the class [Formula: see text] of Gorenstein injective modules. To this aim, we introduce the notion of [Formula: see text]-projective modules and prove that over noetherian rings, if a module can be expressed as the direct limit of finitely presented [Formula: see text]-projective modules, then it is a strict Mittag–Leffler module over [Formula: see text]. As applications, we prove that if [Formula: see text] is a two-sided noetherian ring, then [Formula: see text] is a covering class closed under pure submodules if and only if every injective module is strict Mittag–Leffler over [Formula: see text].


2005 ◽  
Vol 48 (2) ◽  
pp. 275-282
Author(s):  
Patrick F. Smith

AbstractLet R be a commutative Noetherian integral domain with field of fractions Q. Generalizing a forty-year-old theorem of E. Matlis, we prove that the R-module Q/R (or Q) has Krull dimension if and only if R is semilocal and one-dimensional. Moreover, if X is an injective module over a commutative Noetherian ring such that X has Krull dimension, then the Krull dimension of X is at most 1.


1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.


1996 ◽  
Vol 183 (1) ◽  
pp. 217-230 ◽  
Author(s):  
R.R. Colby ◽  
K.R. Fuller

1971 ◽  
Vol 14 (4) ◽  
pp. 517-529 ◽  
Author(s):  
John K. Luedeman

AbstractSanderson (Canad. Math. Bull., 8 (1965), 505–513), considering a nonempty collection Σ of left ideals of a ring R, with unity, defined the concepts of “Σ-injective module” and “Σ-essential extension” for unital left modules. Letting Σ be an idempotent topologizing set (called a σ-set below) Σanderson proved the existence of a “Σ-injective hull” for any unital left module and constructed an Utumi Σ-quotient ring of R as the bicommutant of the Σ-injective hull of RR. In this paper, we extend the concepts of “Σinjective module”, “Σ-essentialextension”, and “Σ-injective hull” to modules over arbitrary rings. An overring Σ of a ring R is a Johnson (Utumi) left Σ-quotient ring of R if RR is Σ-essential (Σ-dense) in RS. The maximal Johnson and Utumi Σ-quotient rings of R are constructed similar to the original method of Johnson, and conditions are given to insure their equality. The maximal Utumi Σquotient ring U of R is shown to be the bicommutant of the Σ-injective hull of RR when R has unity. We also obtain a σ-set UΣ of left ideals of U, generated by Σ, and prove that Uis its own maximal Utumi UΣ-quotient ring. A Σ-singular left ideal ZΣ(R) of R is defined and U is shown to be UΣ-injective when Z Σ(R) = 0. The maximal Utumi Σ-quotient rings of matrix rings and direct products of rings are discussed, and the quotient rings of this paper are compared with these of Gabriel (Bull. Soc. Math. France, 90 (1962), 323–448) and Mewborn (Duke Math. J. 35 (1968), 575–580). Our results reduce to those of Johnson and Utumi when 1 ∊ R and Σ is taken to be the set of all left ideals of R.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1532
Author(s):  
Dong Kyu Kim ◽  
Jung Wook Lim

Let Γ be a commutative monoid, R=⨁α∈ΓRα a Γ-graded ring and S a multiplicative subset of R0. We define R to be a graded S-Noetherian ring if every homogeneous ideal of R is S-finite. In this paper, we characterize when the ring R is a graded S-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded S-Noetherian ring. Finally, we give an example of a graded S-Noetherian ring which is not an S-Noetherian ring.


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


2015 ◽  
Vol 117 (1) ◽  
pp. 150 ◽  
Author(s):  
Kamal Bahmanpour

Let $(R,m)$ be a commutative Noetherian complete local ring and let $M$ be a non-zero Cohen-Macaulay $R$-module of dimension $n$. It is shown that, if $\operatorname{projdim}_R(M)<\infty$, then $\operatorname{injdim}_R(D(H^n_{\mathfrak{m}}(M)))<\infty$, and if $\operatorname{injdim}_R(M)<\infty$, then $\operatorname{projdim}_R(D(H^n_{\mathfrak{m}}(M)))<\infty$, where $D(-):= \operatorname{Hom}_{R}(-,E)$ denotes the Matlis dual functor and $E := E_R(R/\mathfrak{m})$ is the injective hull of the residue field $R/\mathfrak{m}$. Also, it is shown that if $(R,\mathfrak{m})$ is a Noetherian complete local ring, $M$ is a non-zero finitely generated $R$-module and $x_1,\ldots,x_k$, $(k\geq 1)$, is an $M$-regular sequence, then \[ D(H^k_{(x_1,\ldots,x_k)}(D(H^k_{(x_1,\ldots,x_k)}(M))))\simeq M. \] In particular, $\operatorname{Ann} H^k_{(x_1,\ldots,x_k)}(M)=\operatorname{Ann} M$. Moreover, it is shown that if $R$ is a Noetherian ring, $M$ is a finitely generated $R$-module and $x_1,\ldots,x_k$ is an $M$-regular sequence, then \[ \operatorname{Ext}^{k+1}_R(R/(x_1,\ldots,x_k),M)=0. \]


2015 ◽  
Vol 67 (1) ◽  
pp. 28-54 ◽  
Author(s):  
Javad Asadollahi ◽  
Rasool Hafezi ◽  
Razieh Vahed

AbstractWe study bounded derived categories of the category of representations of infinite quivers over a ring R. In case R is a commutative noetherian ring with a dualising complex, we investigate an equivalence similar to Grothendieck duality for these categories, while a notion of dualising complex does not apply to them. The quivers we consider are left (resp. right) rooted quivers that are either noetherian or their opposite are noetherian. We also consider reflection functor and generalize a result of Happel to noetherian rings of finite global dimension, instead of fields.


Sign in / Sign up

Export Citation Format

Share Document