scholarly journals Particle paths of general relativity as geodesics of an affine connection

1970 ◽  
Vol 3 (3) ◽  
pp. 325-335 ◽  
Author(s):  
R. Burman

This paper deals with the motion of incoherent matter, and hence of test particles, in the presence of fields with an arbitrary energy-momentum tensor. The equations of motion are obtained from Einstein's field equations and are written in the form of geodesic equations of an affine connection. The special cases of the electromagnetic field, the Proca field and a scalar field are discussed.

2011 ◽  
Vol 26 (20) ◽  
pp. 1467-1480 ◽  
Author(s):  
TIBERIU HARKO ◽  
TOMI S. KOIVISTO ◽  
FRANCISCO S. N. LOBO

We derive the field equations and the equations of motion for scalar fields and massive test particles in modified theories of gravity with an arbitrary coupling between geometry and matter by using the Palatini formalism. We show that the independent connection can be expressed as the Levi–Cività connection of an auxiliary, matter Lagrangian dependent metric, which is related with the physical metric by means of a conformal transformation. Similarly to the metric case, the field equations impose the nonconservation of the energy–momentum tensor. We derive the explicit form of the equations of motion for massive test particles in the case of a perfect fluid, and the expression of the extra-force is obtained in terms of the matter-geometry coupling functions and of their derivatives. Generally, the motion is non-geodesic, and the extra force is orthogonal to the four-velocity. It is pointed out here that the force is of a different nature than in the metric formalism. We also consider the implications of a nonlinear dependence of the action upon the matter Lagrangian.


2005 ◽  
Vol 20 (18) ◽  
pp. 4309-4330 ◽  
Author(s):  
M. SHARIF ◽  
TASNIM FATIMA

This paper is aimed to elaborate the problem of energy–momentum in general relativity. In this connection, we use the prescriptions of Einstein, Landau–Lifshitz, Papapetrou and Möller to compute the energy–momentum densities for two exact solutions of Einstein field equations. The space–times under consideration are the nonnull Einstein–Maxwell solutions and the singularity-free cosmological model. The electromagnetic generalization of the Gödel solution and the Gödel metric become special cases of the nonnull Einstein–Maxwell solutions. It turns out that these prescriptions do not provide consistent results for any of these space–times. These inconsistent results verify the well-known proposal that the idea of localization does not follow the lines of pseudotensorial construction but instead follows from the energy–momentum tensor itself. These differences can also be understood with the help of the Hamiltonian approach.


1953 ◽  
Vol 5 ◽  
pp. 17-25 ◽  
Author(s):  
L. Infeld

The problem of the field equations and the equations of motion in general relativity theory is now sufficiently clarified. The equations of motion can be deduced from pure field equations by treating matter as singularities, [2; 3], or from field equations with the energy momentum tensor [4]. Recently two papers appeared in which the problem of the coordinate system was considered [5; 8]. The two papers are in general agreement as far as the role of the coordinate system is concerned. Yet there are some differences which require clarification.


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Zahra Haghani ◽  
Tiberiu Harko

AbstractWe generalize and unify the $$f\left( R,T\right) $$ f R , T and $$f\left( R,L_m\right) $$ f R , L m type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R, of the trace of the energy–momentum tensor T, and of the matter Lagrangian $$L_m$$ L m , so that $$ L_{grav}=f\left( R,L_m,T\right) $$ L grav = f R , L m , T . We obtain the gravitational field equations in the metric formalism, the equations of motion for test particles, and the energy and momentum balance equations, which follow from the covariant divergence of the energy–momentum tensor. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equations of motion is also investigated, and the expression of the extra acceleration is obtained for small velocities and weak gravitational fields. The generalized Poisson equation is also obtained in the Newtonian limit, and the Dolgov–Kawasaki instability is also investigated. The cosmological implications of the theory are investigated for a homogeneous, isotropic and flat Universe for two particular choices of the Lagrangian density $$f\left( R,L_m,T\right) $$ f R , L m , T of the gravitational field, with a multiplicative and additive algebraic structure in the matter couplings, respectively, and for two choices of the matter Lagrangian, by using both analytical and numerical methods.


Author(s):  
Dimitris Mastoridis ◽  
K. Kalogirou

We explore the field equations in a 4-d complex space-time, in the same way, that general relativity does for our usual 4-d real space-time, forming this way, a new "general  relativity" in C4 space-time, free of sources. Afterwards, by embedding our usual 4-d real space-time in C4 space-time, we describe  geometrically the energy-momentum tensor Tμν as the lost geometric information of this embedding. We further give possible explanation of dark eld and dark energy.


2017 ◽  
Vol 14 (04) ◽  
pp. 1750053 ◽  
Author(s):  
Saeed Nayeh ◽  
Mehrdad Ghominejad

In this paper, we obtain the field equations of Weyl static axially symmetric space-time in the framework of [Formula: see text] gravity, where [Formula: see text] is torsion scalar. We will see that, for [Formula: see text] related to teleparallel equivalent general relativity, these equations reduce to Einstein field equations. We show that if the components of energy–momentum tensor are symmetric, the scalar torsion must be either constant or only a function of radial component [Formula: see text]. The solutions of some functions [Formula: see text] in which [Formula: see text] is a function of [Formula: see text] are obtained.


Author(s):  
T. S. Chang

The relativistic field theories of elementary particles are extended to cases where the field equations are derived from Lagrangians containing all derivatives of the field quantities. Expressions for the current, the energy-momentum tensor, the angular-momentum tensor, and the symmetrized energy-momentum tensor are given. When the field interacts with an electromagnetic field, we introduce a subtraction procedure, by which all the above expressions are made gauge-invariant. The Hamiltonian formulation of the equations of motion in a gauge-invariant form is also given.After considering the Lagrangian L as a scalar in a general relativity transformation and thus a function of gμν and their derivatives, the functional derivative ofwith respect to gμν (x) at a point where the space time is flat is worked out. It is shown that this differs from the symmetrized energy-momentum tensor given in the above sections by a term which vanishes when certain operators Sij are antisymmetrical or when the Lagrangian contains the first derivatives of the field quantities only and whose divergence to either μ or ν vanishes.


1978 ◽  
Vol 31 (1) ◽  
pp. 105
Author(s):  
LJ Gregory ◽  
AH Klotz

A technique is developed, which uses a general energy-momentum tensor, to derive the equations of motion in general relativity. This enables the geodesic equations for spinless particles to be deduced.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter shows that fluctuations of quantum origin are generated during inflation and that this process supplies initial conditions compatible with the observations. These fluctuations are therefore an important prediction of inflationary models. The chapter thus begins with a study of perturbations during inflation, proceeding in a similar manner to the previous chapter by finding the perturbation of the energy–momentum tensor of the scalar field. Another method of deriving the equations of motion of the perturbations is to start from the action of general relativity coupled to a scalar field, and expand to second order in the metric and scalar field perturbations. The chapter then proceeds with the determination of the initial conditions and the slow-roll inflation.


Sign in / Sign up

Export Citation Format

Share Document