GENERAL STABILITY OF THE EXPONENTIAL AND LOBAČEVSKIǏ FUNCTIONAL EQUATIONS

2016 ◽  
Vol 94 (2) ◽  
pp. 278-285 ◽  
Author(s):  
JAEYOUNG CHUNG

Let $S$ be a semigroup possibly with no identity and $f:S\rightarrow \mathbb{C}$. We consider the general superstability of the exponential functional equation with a perturbation $\unicode[STIX]{x1D713}$ of mixed variables $$\begin{eqnarray}\displaystyle |f(x+y)-f(x)f(y)|\leq \unicode[STIX]{x1D713}(x,y)\quad \text{for all }x,y\in S. & & \displaystyle \nonumber\end{eqnarray}$$ In particular, if $S$ is a uniquely $2$-divisible semigroup with an identity, we obtain the general superstability of Lobačevskiǐ’s functional equation with perturbation $\unicode[STIX]{x1D713}$$$\begin{eqnarray}\displaystyle \biggl|f\biggl(\frac{x+y}{2}\biggr)^{2}-f(x)f(y)\biggr|\leq \unicode[STIX]{x1D713}(x,y)\quad \text{for all }x,y\in S. & & \displaystyle \nonumber\end{eqnarray}$$

1969 ◽  
Vol 12 (6) ◽  
pp. 837-846 ◽  
Author(s):  
John A. Baker

Consider the functional equation(1)assumed valid for all real x, y and h. Notice that (1) can be written(2)a difference analogue of the wave equation, if we interpret etc., (i. e. symmetric h differences), and that (1) has an interesting geometric interpretation. The continuous solutions of (1) were found by Sakovič [5].


1988 ◽  
Vol 38 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Peter L. Walker

We consider the Abelian functional equationwhere φ is a given entire function and g is to be found. The inverse function f = g−1 (if one exists) must satisfyWe show that for a wide class of entire functions, which includes φ(z) = ez − 1, the latter equation has a non-constant entire solution.


1985 ◽  
Vol 97 (2) ◽  
pp. 261-278 ◽  
Author(s):  
P. J. McCarthy ◽  
M. Crampin ◽  
W. Stephenson

AbstractThe requirement that the graph of a function be invariant under a linear map is equivalent to a functional equation of f. For area preserving maps M(det (M) = 1), the functional equation is equivalent to an (easily solved) linear one, or to a quadratic one of the formfor all Here 2C = Trace (M). It is shown that (Q) admits continuous solutions ⇔ M has real eigenvalues ⇔ (Q) has linear solutions f(x) = λx ⇔ |C| ≥ 1. For |c| = 1 or C < – 1, (Q) only admits a few simple solutions. For C > 1, (Q) admits a rich supply of continuous solutions. These are parametrised by an arbitrary function, and described in the sense that a construction is given for the graphs of the functions which solve (Q).


1960 ◽  
Vol 3 (2) ◽  
pp. 113-120 ◽  
Author(s):  
I. N. Baker

In a recent paper [2] Lambek and Moser have introduced the functional equations1and2in connection with some problems of number theory, in particular in dealing with the sums by pairs of sets of integers. The second may be put into the same form as (1) by the substitutions x = In z, f(ln z) = F(z), h(ln z) = H(z).


2012 ◽  
Vol 85 (2) ◽  
pp. 202-216 ◽  
Author(s):  
BARBARA PRZEBIERACZ

AbstractWe investigate the Pexider-type functional equation where f, g, h are real functions defined on an abelian group G. We solve this equation under the assumptions G=ℝ and f is continuous.


1970 ◽  
Vol 11 (3) ◽  
pp. 362-366 ◽  
Author(s):  
C. T. Ng

In a previous paper [1] J. Aczél has shown the following Theorem 1. If in the (closed, half-closed or open, finite or infinite) interval 〈A, B〉and there f, F are there, f F are continuous, F intern (the value F(x, y) lies strictly between x and y) and u → H(u, v, x, y) or v → H(u, v, x, y) are injective (i.e. or , then the functional equation (*) with the initial conditionshas at most one solution.


2012 ◽  
Vol 85 (2) ◽  
pp. 191-201 ◽  
Author(s):  
BARBARA PRZEBIERACZ

AbstractWe investigate the Pexider-type functional equation where f,g,h are real functions defined on an abelian group G.


2013 ◽  
Vol 89 (1) ◽  
pp. 33-40 ◽  
Author(s):  
JANUSZ BRZDĘK

AbstractWe prove a hyperstability result for the Cauchy functional equation$f(x+ y)= f(x)+ f(y)$, which complements some earlier stability outcomes of J. M. Rassias. As a consequence, we obtain the slightly surprising corollary that for every function$f$, mapping a normed space${E}_{1} $into a normed space${E}_{2} $, and for all real numbers$r, s$with$r+ s\gt 0$one of the following two conditions must be valid:$$\begin{eqnarray*}\displaystyle \sup _{x, y\in E_{1}}\Vert f(x+ y)- f(x)- f(y)\Vert \hspace{0.167em} \mathop{\Vert x\Vert }\nolimits ^{r} \hspace{0.167em} \mathop{\Vert y\Vert }\nolimits ^{s} = \infty , &&\displaystyle\end{eqnarray*}$$$$\begin{eqnarray*}\displaystyle \sup _{x, y\in E_{1}}\Vert f(x+ y)- f(x)- f(y)\Vert \hspace{0.167em} \mathop{\Vert x\Vert }\nolimits ^{r} \hspace{0.167em} \mathop{\Vert y\Vert }\nolimits ^{s} = 0. &&\displaystyle\end{eqnarray*}$$In particular, we present a new method for proving stability for functional equations, based on a fixed point theorem.


1980 ◽  
Vol 23 (2) ◽  
pp. 145-150 ◽  
Author(s):  
PL Kannappan

It is known that while the Shannon and the Rényi entropies are additive, the measure entropy of degree β proposed by Havrda and Charvat (7) is non-additive. Ever since Chaundy and McLeod (4) considered the following functional equationwhich arose in statistical thermodynamics, (1.1) has been extensively studied (1, 5, 6, 8). From the algebraic properties of symmetry, expansibility and branching of the entropy (viz. Shannon entropy Hn, etc.) one obtains the sum representationwhich with the property of additivity yields the functional equation (1.1), (9, 10).


1990 ◽  
Vol 42 (4) ◽  
pp. 696-708 ◽  
Author(s):  
John A. Baker

The subject of this paper is the use of the theory of Schwartz distributions and approximate identities in studying the functional equationThe aj’s and b are complex-valued functions defined on a neighbourhood, U, of 0 in Rm, hj. U → Rn with hj(0) = 0 and fj, g: Rn → C for 1 ≦ j ≦ N. In most of what follows the aj's and hj's are assumed smooth and may be thought of as given. The fj‘s, b and g may be thought of as the unknowns. Typically we are concerned with locally integrable functions f1, … , fN such that, for each s in U, (1) holds for a.e. (almost every) x ∈ Rn, in the sense of Lebesgue measure.


Sign in / Sign up

Export Citation Format

Share Document