ODD–EVEN DECOMPOSITION OF FUNCTIONS

2020 ◽  
Vol 102 (1) ◽  
pp. 104-108 ◽  
Author(s):  
IOSIF PINELIS

The main result of this note implies that any function from the product of several vector spaces to a vector space can be uniquely decomposed into the sum of mutually orthogonal functions that are odd in some of the arguments and even in the other arguments. Probabilistic notions and facts are employed to simplify statements and proofs.

2002 ◽  
Vol 13 (08) ◽  
pp. 797-820
Author(s):  
HIROSHI SAITO

We give two applications of an explicit formula for global zeta functions of prehomogeneous vector spaces in Math. Ann.315 (1999), 587–615. One is concerned with an explicit form of global zeta functions associated with Freudenthal quartics, and the other the comparison of the zeta function of a unsaturated prehomogeneous vector space with that of the saturated one obtained from it.


1955 ◽  
Vol 9 ◽  
pp. 129-146 ◽  
Author(s):  
Takashi Ono

In [0], the writer proved some theorems of Hasse type for two orthogonal groups which operate on the same vector space. In this paper, we shall further generalize those results in two directions. One is to consider the propositions of that type for two orthogonal groups which operate respectively on two vector spaces whose dimensions are different from each other, and the other is to deal with some conspicuous subgroups of an orthogonal group simultaneously which play important roles in the structure theory for orthogonal groups. For this reason, the present paper consists of three steps §1, §2 and §3 which give the generalizations in the above sense of the results in the corresponding sections of [0].


1973 ◽  
Vol 57 (399) ◽  
pp. 56-62 ◽  
Author(s):  
J. F. Rigby ◽  
James Wiegold

In a recent paper [1], Victor Bryant shows how the number of axioms required to define a vector space can be reduced to seven (in addition to closure requirements). The main result of his article is that commutativity of addition can be deduced from the other axioms. In the present article we show how to reduce this number to six. For certain underlying fields one or more of these axioms can be deduced from the others. However, the six axioms are in general independent; we invite interested readers to show this by constructing their own counter-examples, which the editor of the Gazette will be pleased to receive.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1118
Author(s):  
Faisal Mehmood ◽  
Fu-Gui Shi

The generalization of binary operation in the classical algebra to fuzzy binary operation is an important development in the field of fuzzy algebra. The paper proposes a new generalization of vector spaces over field, which is called M-hazy vector spaces over M-hazy field. Some fundamental properties of M-hazy field, M-hazy vector spaces, and M-hazy subspaces are studied, and some important results are also proved. Furthermore, the linear transformation of M-hazy vector spaces is studied and their important results are also proved. Finally, it is shown that M-fuzzifying convex spaces are induced by an M-hazy subspace of M-hazy vector space.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


1998 ◽  
Vol 57 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Rachel Thomas

In this paper we consider the characterisation of those elements of a transformation semigroup S which are a product of two proper idempotents. We give a characterisation where S is the endomorphism monoid of a strong independence algebra A, and apply this to the cases where A is an arbitrary set and where A is an arbitrary vector space. The results emphasise the analogy between the idempotent generated subsemigroups of the full transformation semigroup of a set and of the semigroup of linear transformations from a vector space to itself.


2016 ◽  
Vol 101 (2) ◽  
pp. 277-287
Author(s):  
AARON TIKUISIS

It is shown that, for any field $\mathbb{F}\subseteq \mathbb{R}$, any ordered vector space structure of $\mathbb{F}^{n}$ with Riesz interpolation is given by an inductive limit of a sequence with finite stages $(\mathbb{F}^{n},\mathbb{F}_{\geq 0}^{n})$ (where $n$ does not change). This relates to a conjecture of Effros and Shen, since disproven, which is given by the same statement, except with $\mathbb{F}$ replaced by the integers, $\mathbb{Z}$. Indeed, it shows that although Effros and Shen’s conjecture is false, it is true after tensoring with $\mathbb{Q}$.


2019 ◽  
Vol 27 (1) ◽  
pp. 47-60
Author(s):  
Roland Coghetto

Summary Using Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]). It is also equivalent to the notion of “Mesure algèbrique”1, to the opposite of the notion of Teilverhältnis2 or to the opposite of the ordered length-ratio [9]. In the second part, we introduce the classic notion of “cross-ratio” of 4 points aligned in a real vector space. Finally, we show that if the real vector space is the real line, the notion corresponds to the classical notion3 [9]: The cross-ratio of a quadruple of distinct points on the real line with coordinates x1, x2, x3, x4 is given by: $$({x_1},{x_2};{x_3},{x_4}) = {{{x_3} - {x_1}} \over {{x_3} - {x_2}}}.{{{x_4} - {x_2}} \over {{x_4} - {x_1}}}$$ In the Mizar Mathematical Library, the vector spaces were first defined by Kusak, Leonczuk and Muzalewski in the article [6], while the actual real vector space was defined by Trybulec [10] and the complex vector space was defined by Endou [4]. Nakasho and Shidama have developed a solution to explore the notions introduced by different authors4 [7]. The definitions can be directly linked in the HTMLized version of the Mizar library5. The study of the cross-ratio will continue within the framework of the Klein- Beltrami model [2], [3]. For a generalized cross-ratio, see Papadopoulos [8].


Author(s):  
Oleg Reinov ◽  
Asfand Fahad

The notions of V-dentability, V-s-dentability and V-f-dentability are introduced. It is shown, in particular, that if B is a bounded sequentially complete convex metrizable subset of a locally convex vector space E and V is a neighborhood of zero in E, then the following are equivalent: 1). B is subset V-dentable; 2). B is subset V-s-dentable; 3). B is subset V-f-dentable. It follows from this that for a wide class of locally convex vector spaces E, which strictly contains the class of (BM) spaces (introduced by Elias Saab in 1978), the following is true: every closed bounded subset of E is dentable if and only if every closed bounded subset of E is f-dentable. Also, we get a positive answer to the Saab's question (1978) of whether the subset dentability and the subset s-dentability are the same forthe bounded complete convex metrizable subsets of any l.c.v. space.


2020 ◽  
Vol 19 ◽  

The purpose of the present paper is to introduce the new class of ω b - topological vector spaces. We study several basic and fundamental properties of ω b - topological and investigate their relationships with certain existing spaces. Along with other results, we prove that transformation of an open (resp. closed) set in aω b - topological vector space is ω b - open (resp. closed). In addition, some important and useful characterizations of ω b - topological vector spaces are established. We also introduce the notion of almost ω b - topological vector spaces and present several general properties of almost ω b - topological vector spaces.


Sign in / Sign up

Export Citation Format

Share Document