Ephialtes brevicornis (Grav.) as an External Parasite of the Diamond-back Moth, Plutella maculipennis (Curt.)

1957 ◽  
Vol 48 (3) ◽  
pp. 477-488 ◽  
Author(s):  
A. M. Stuart

Ephialtes brevicornis (Grav.) has been found to parasitise the prepupal stage of Plutella maculipennis (Curt.) under laboratory conditions.A general description of the life-cycle of E. brevicornis on P. maculipennis is given and it is found to occupy 16 days from egg to adult at 20°C. and a R.H. of 60 per cent. Comparative descriptions are given of the five larval instars. The egg is also described.

2009 ◽  
Vol 160 (1-2) ◽  
pp. 134-137 ◽  
Author(s):  
Ze Chen ◽  
Zhijun Yu ◽  
Xiaojun Yang ◽  
Hongyuan Zheng ◽  
Jingze Liu

2012 ◽  
Vol 59 (4) ◽  
pp. 493-500 ◽  
Author(s):  
Miling Ma ◽  
Guiquan Guan ◽  
Ze Chen ◽  
Zhijie Liu ◽  
Aihong Liu ◽  
...  

Author(s):  
Alec R. Lackmann ◽  
Malcolm G. Butler

Except for one unconfirmed case, chironomid larvae have been reported to pass through four larval instars between egg and pupal stages. We have observed a fifth larval instar to be a standard life-cycle feature of the podonomine Trichotanypus alaskensis Brundin 1966 in tundra ponds on the Arctic Coastal Plain near Barrow, Alaska. T. alaskensis has a one-year life cycle in these arctic ponds. Adults emerge in June ~2-3 weeks after pond thaw, then mate and oviposit; most newly-hatched larvae reach instar IV by October when pond sediments freeze. Overwintering larvae complete instar IV within a few days of thaw, then molt again to a fifth larval instar. Imaginal discs, normally seen only during instar IV in Chironomidae, develop across both instars IV & V prior to pupation and adult emergence. While monitoring larval development post-thaw in 2014, we noticed freshly-molted T. alaskensis larval exuviae a week or more prior to any pupation by that species. In 2015-16 we reared overwintering instar IV larvae from single pond sources, individually with daily monitoring, through molts to instar V, pupa, and adult. Some overwintering instar II and III larvae were reared as well, but were few in number. During 2016 we also reared T. alaskensis progeny (from eggs) through instar II, thus documenting head capsule size ranges for all five instars in a single pond’s population. Without individual rearings, the fifth larval instar was not readily apparent for two reasons: 1) The molt itself occurs immediately after thaw and is so synchronous it is difficult to discern in daily field samples. 2) The head capsule size increment between instars IV-V is much lower than the ratio predicted by the Brooks-Dyar Rule. Up through instar IV, the Brooks-Dyar ratio for T. alaskensis ranged 1.30-1.61, but during the IV-V molt head capsule dimensions (sexes pooled) increased by a ratio of 1.09 – comparable to the magnitude of sexual dimorphism in head capsule size within each of the final two larval instars. Individual rearings coupled with 2014-2016 field surveys in nine other ponds suggest that five larval instars is an obligatory trait of this species at this location. As this is the first confirmed case of five larval instars in a chironomid, the phylogenetic uniqueness of this trait needs further investigation.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1017
Author(s):  
Sarayut Pittarate ◽  
Julius Rajula ◽  
Afroja Rahman ◽  
Perumal Vivekanandhan ◽  
Malee Thungrabeab ◽  
...  

Fall armyworm Spodoptera frugiperda is a major pest of corn, rice, and sorghum among other crops usually controlled using synthetic or biological insecticides. Currently, the new invention of nanotechnology is taking root in the agricultural industry as an alternative source of pest management that is target-specific, safe, and efficient. This study sought to determine the efficacy of commercial Zinc Oxide (ZnO) nanoparticles (NPs) towards S. frugiperda under laboratory conditions. ZnO NPs were diluted into different concentrations (100–500 ppm), where the baby corn used to feed the S. frugiperda larvae was dipped. The development of the insect feeding on food dipped in ZnO solution was significantly (p < 0.05) affected, and the number of days that the insect took to complete its life cycle had a significant difference compared to the control. There was a significant difference in the adults’ emergence in all the concentrations of ZnO NPs compared to the control, with over 90% of the eggs successfully going through the life cycle until adult emergence. Additionally, several body malformations were observed throughout the lifecycle of the insect. Also, the fecundity of the females was greatly affected. The findings of this study suggest the possibility of exploitation of ZnO nanoparticles not only to manage S. frugiperda but to significantly reduce their population in the ecosystem through body deformations, reduced fecundity, reduced oviposition, and hatchability of eggs. It will be a valuable tool in integrated pest management regimens.


2020 ◽  
Vol 49 (6) ◽  
pp. 71-78
Author(s):  
О. M. Bonina ◽  
Е. А. Serbina

The results of studying the body structure of trematode cercariae of the families Opisthorchiidae and Notocotylidae and the features of their development in Western Siberia are presented. The data of long-term (1994–2019) studies on the spread of these pathogens of dangerous parasitic diseases in humans and animals are analyzed and summarized. The studies were conducted according to generally accepted methods in parasitology and hydrobiology. The species affi  liation of trematodes was determined in laboratory conditions on mature cercariae that independently left the shells of the host mollusks Bithynia tentaculata and B. troscheli. It was noted that the trematodes of the Opisthorchiidae and Notocotylidae families at the cercaria stage have the following similar features: a simple tail, pigmented eyes, and one oral sucking cup. Diagnosis of trematode cercariae of Opisthorchiidae and Notocotylidae families is possible by the following signs: the tail of the opisthorchis cercaria has a swimming membrane and is 2 times longer than the body, the tail of the notocotylid has no swimming membrane and is approximately equal in length to the body. Opisthor-chis cercariae have two pigment eyes, notocotilids – three. In the life cycle of opisthorchis, there are two intermediate hosts (bitinia and fi  sh), in the notocotylid cycle, one (bitinia). Opisthorchis cercariae have penetration glands, but notocotylids do not; the maximum daily emission of opisthorchis cercariae is ten times higher than that of notocotylids (6672 and 422 cercariae, respectively). The ability to diagnose opisthorchis and notocotilid at the cercaria stage allows the identifi cation of local foci of epidemiologically and epizootically dangerous diseases.


2011 ◽  
Vol 8 (4) ◽  
pp. 870-876 ◽  
Author(s):  
Baghdad Science Journal

The study aimes to investigate the effects of leaves & fruits ethanolic extract of Duranta repens L. on biological performance for all stages of life cycle of the mosquito Culex pipiens piepiens L., For this purpose the mosquitoes were reared in the laboratory till the fourth generation .Different concentrations of leaves (800,1000,1200,1400ppm) and fruits (800,1000,1200ppm) were tested on (eggs,larval stages,pupal stages and the adult stages). The results revealed that the extracts gave highest mortality rate for the eggs at(100%) compared with control,fruits extract shown highest mortality rate of the four larval instars (100%)at 1200ppm compared with leave extract at(80,50,33.33,20%).Also the extract caused a high mortality rate for pupal stage compared with fruits extract at(76.66,53.33%)respectively.Also ethanolic extract caused a 83.33,76.66% for male &femail. Developmental deformation was observed.. In conclusion, the findings of the present study indicate that the leaves &fruits extracts of Duranta repens L., , can be widely and effectively used in the control of mosquito.


2013 ◽  
Vol 10 (4) ◽  
pp. 1096-1101
Author(s):  
Baghdad Science Journal

The present study was conducted to determine the pathogenicity of Paecilomyces farinosus as biocontrol agents against Tragoderma granarium (khapra) under laboratory conditions with three concentrations ( 2.8 x 108 , 2.8 x 106 ,2.8 x104 spores/ ml). The laboratory results revealed that fungi showed it's higher pathogencity to larve stage on 2nd instar and 6th instar , although their capability differs according to the fungi concentrations this fungi caused higher mortality of 2nd larval instar 70% and 60% ,55% when it was used at concentrations 2 .8 x 106 ,2.8 x104 spores/ ml respectively. On the other hand on 6th larval instars 55% , 35% , 30% at concentrations ( 2.8 x 108 , 2.8 x 106 ,2.8 x104 spores/ ml) respectively, and the highest rate of distortions in the adult insects from the 2nd instar treatment than the adult insects from the 6th instar treatment concentration of this fungi.


2017 ◽  
Vol 55 (2) ◽  
pp. 193-196 ◽  
Author(s):  
Shang Jin ◽  
Tianhong Wang ◽  
Tuo Li ◽  
Ming Liu ◽  
Qingying Jia ◽  
...  

1991 ◽  
Vol 62 (1) ◽  
pp. 15-16 ◽  
Author(s):  
Y. Rechav

Some aspects of the life cycle of the tick Ixodes pilosus were studied under laboratory conditions. The preoviposition period was 7,2 ± 0,6 d. Maximum egg production was on Day 4 after oviposition commenced, with total egg production of 2 395 ± 128,7 eggs per female. The mean feeding time of larvae was 3,3 ± 0,1 d. The life cycle could not be completed due to the specific requirements of this species.


Sign in / Sign up

Export Citation Format

Share Document