Identifying environmental drivers of insect phenology across space and time: Culicoides in Scotland as a case study

2012 ◽  
Vol 103 (2) ◽  
pp. 155-170 ◽  
Author(s):  
K.R. Searle ◽  
A. Blackwell ◽  
D. Falconer ◽  
M. Sullivan ◽  
A. Butler ◽  
...  

AbstractInterpreting spatial patterns in the abundance of species over time is a fundamental cornerstone of ecological research. For many species, this type of analysis is hampered by datasets that contain a large proportion of zeros, and data that are overdispersed and spatially autocorrelated. This is particularly true for insects, for which abundance data can fluctuate from zero to many thousands in the space of weeks. Increasingly, an understanding of the ways in which environmental variation drives spatial and temporal patterns in the distribution, abundance and phenology of insects is required for management of pests and vector-borne diseases. In this study, we combine the use of smoothing techniques and generalised linear mixed models to relate environmental drivers to key phenological patterns of two species of biting midges, Culicoides pulicaris and C. impunctatus, of which C. pulicaris has been implicated in transmission of bluetongue in Europe. In so doing, we demonstrate analytical tools for linking the phenology of species with key environmental drivers, despite using a relatively small dataset containing overdispersed and zero-inflated data. We demonstrate the importance of landcover and climatic variables in determining the seasonal abundance of these two vector species, and highlight the need for more empirical data on the effects of temperature and precipitation on the life history traits of palearctic Culicoides spp. in Europe.

Epidemics ◽  
2009 ◽  
Vol 1 (3) ◽  
pp. 153-161 ◽  
Author(s):  
N.A. Hartemink ◽  
B.V. Purse ◽  
R. Meiswinkel ◽  
H.E. Brown ◽  
A. de Koeijer ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Oscar Daniel Salomón ◽  
María Gabriela Quintana ◽  
Andrea Verónica Mastrángelo ◽  
María Soledad Fernández

Vector-borne diseases closely associated with the environment, such as leishmaniases, have been a usual argument about the deleterious impact of climate change on public health. From the biological point of view interaction of different variables has different and even conflicting effects on the survival of vectors and the probability transmission of pathogens. The results on ecoepidemiology of leishmaniasis in Argentina related to climate variables at different scales of space and time are presented. These studies showed that the changes in transmission due to change or increase in frequency and intensity of climatic instability were expressed through changes in the probability of vector-human reservoir effective contacts. These changes of contact in turn are modulated by both direct effects on the biology and ecology of the organisms involved, as by perceptions and changes in the behavior of the human communities at risk. Therefore, from the perspective of public health and state policy, and taking into account the current nonlinear increased velocity of climate change, we concluded that discussing the uncertainties of large-scale models will have lower impact than to develop-validate mitigation strategies to be operative at local level, and compatibles with sustainable development, conservation biodiversity, and respect for cultural diversity.


2020 ◽  
Vol 376 (1818) ◽  
pp. 20190807 ◽  
Author(s):  
Robert T. Jones ◽  
Elizabeth Pretorius ◽  
Thomas H. Ant ◽  
John Bradley ◽  
Anna Last ◽  
...  

Vector-borne diseases threaten the health of populations around the world. While key interventions continue to provide protection from vectors, there remains a need to develop and test new vector control tools. Cluster-randomized trials, in which the intervention or control is randomly allocated to clusters, are commonly selected for such evaluations, but their design must carefully consider cluster size and cluster separation, as well as the movement of people and vectors, to ensure sufficient statistical power and avoid contamination of results. Island settings present an opportunity to conduct these studies. Here, we explore the benefits and challenges of conducting intervention studies on islands and introduce the Bijagós archipelago of Guinea-Bissau as a potential study site for interventions intended to control vector-borne diseases. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases'.


Author(s):  
Giovanni Lo Iacono ◽  
Gordon L. Nichols

The introduction of pasteurization, antibiotics, and vaccinations, as well as improved sanitation, hygiene, and education, were critical in reducing the burden of infectious diseases and associated mortality during the 19th and 20th centuries and were driven by an improved understanding of disease transmission. This advance has led to longer average lifespans and the expectation that, at least in the developed world, infectious diseases were a problem of the past. Unfortunately this is not the case; infectious diseases still have a significant impact on morbidity and mortality worldwide. Moreover, the world is witnessing the emergence of new pathogens, the reemergence of old ones, and the spread of antibiotic resistance. Furthermore, effective control of infectious diseases is challenged by many factors, including natural disasters, extreme weather, poverty, international trade and travel, mass and seasonal migration, rural–urban encroachment, human demographics and behavior, deforestation and replacement with farming, and climate change. The importance of environmental factors as drivers of disease has been hypothesized since ancient times; and until the late 19th century, miasma theory (i.e., the belief that diseases were caused by evil exhalations from unhealthy environments originating from decaying organic matter) was a dominant scientific paradigm. This thinking changed with the microbiology era, when scientists correctly identified microscopic living organisms as the pathogenic agents and developed evidence for transmission routes. Still, many complex patterns of diseases cannot be explained by the microbiological argument alone, and it is becoming increasingly clear that an understanding of the ecology of the pathogen, host, and potential vectors is required. There is increasing evidence that the environment, including climate, can affect pathogen abundance, survival, and virulence, as well as host susceptibility to infection. Measuring and predicting the impact of the environment on infectious diseases, however, can be extremely challenging. Mathematical modeling is a powerful tool to elucidate the mechanisms linking environmental factors and infectious diseases, and to disentangle their individual effects. A common mathematical approach used in epidemiology consists in partitioning the population of interest into relevant epidemiological compartments, typically individuals unexposed to the disease (susceptible), infected individuals, and individuals who have cleared the infection and become immune (recovered). The typical task is to model the transitions from one compartment to another and to estimate how these populations change in time. There are different ways to incorporate the impact of the environment into this class of models. Two interesting examples are water-borne diseases and vector-borne diseases. For water-borne diseases, the environment can be represented by an additional compartment describing the dynamics of the pathogen population in the environment—for example, by modeling the concentration of bacteria in a water reservoir (with potential dependence on temperature, pH, etc.). For vector-borne diseases, the impact of the environment can be incorporated by using explicit relationships between temperature and key vector parameters (such as mortality, developmental rates, biting rate, as well as the time required for the development of the pathogen in the vector). Despite the tremendous advancements, understanding and mapping the impact of the environment on infectious diseases is still a work in progress. Some fundamental aspects, for instance, the impact of biodiversity on disease prevalence, are still a matter of (occasionally fierce) debate. There are other important challenges ahead for the research exploring the potential connections between infectious diseases and the environment. Examples of these challenges are studying the evolution of pathogens in response to climate and other environmental changes; disentangling multiple transmission pathways and the associated temporal lags; developing quantitative frameworks to study the potential effect on infectious diseases due to anthropogenic climate change; and investigating the effect of seasonality. Ultimately, there is an increasing need to develop models for a truly “One Health” approach, that is, an integrated, holistic approach to understand intersections between disease dynamics, environmental drivers, economic systems, and veterinary, ecological, and public health responses.


Author(s):  
Marta S. Shocket ◽  
Christopher B. Anderson ◽  
Jamie M. Caldwell ◽  
Marissa L. Childs ◽  
Lisa I. Couper ◽  
...  

The transmission of vector-borne diseases is sensitive to environmental conditions, including temperature, humidity, rainfall, and land use/habitat quality. Understanding these causal relationships is especially important as increasing anthropogenic changes drive shifts in vector-borne disease dynamics. In this chapter, we first briefly describe the biology of vectors and pathogens that underlies environmental influences on transmission of vector-borne diseases. Next, we review the impacts of each of the major environmental drivers (as previously mentioned), synthesizing and comparing mechanisms across different vector-borne disease systems. Then, we discuss key challenges and standard approaches to research in the discipline. Finally, we highlight areas where research is advancing in promising new directions and suggest areas where new approaches are needed.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Maha Bouzid ◽  
Felipe J Colón-González ◽  
Tobias Lung ◽  
Iain R Lake ◽  
Paul R Hunter

2019 ◽  
Vol 57 (1) ◽  
pp. 8-16
Author(s):  
Christina E Thomas ◽  
Emily S Burton ◽  
Jesse L Brunner

Abstract Vector feeding behavior can have a profound influence on the transmission of vector-borne diseases. In the case of black-legged ticks, Ixodes scapularis Say, which vectors the agents of Lyme disease, babesiosis, and other pathogens, the timing and propensity of questing can determine which hosts are fed upon as well as the risk of contact with humans. Yet we know little about the controls and constraints on tick host-finding behavior under natural conditions. Ticks must balance the need to quest for blood meal hosts with the risk of desiccation, all on a fixed energy budget. Prior research, primarily in the laboratory, has shown that questing activity varies with conditions (e.g., temperature, relative humidity), light-dark cycles, and energy reserves, but the findings have been idiosyncratic and the dominant factor(s) in nature remains unknown. We measured questing activity of nymphs and larvae throughout the day and night and over several weeks in enclosures across a range of suitable tick habitats within a site in the Northeast. Activity of nymphs increased slightly during dawn and dusk, opposite of larvae, and declined slightly with air temperature and rain, but these patterns were weak and inconsistent among replicate sites. Rather it appears a fraction of ticks were questing most of the time, regardless of conditions. Our study suggests neither climatic conditions or light-dark cycles have appreciable influence on tick questing behavior.


2010 ◽  
Vol 18 (04) ◽  
pp. 847-866 ◽  
Author(s):  
PIERPAOLO VITTORINI ◽  
ANTONELLA VILLANI ◽  
FERDINANDO DI ORIO

Eubank et al. propose to study the spread of infectious disease in large urban environments using dynamic bipartite graph modeling the contact pattern, and computer simulations to estimate the evolution of epidemics. Eubank's approach requires a detailed knowledge of individuals, daily routine. In our work we would generalize the model by introducing a stochastic relocation of people and vectors among locations, thanks to distribution functions. Computer simulations are used to produce the infection and death processes. Finally, the paper presents two case studies. The first case study emphasizes the effect of using probabilistic relocation in a particular social network, while the second discusses how vector-borne diseases could be taken into account.


2021 ◽  
Author(s):  
Nana Luo ◽  
Susan Cassels ◽  
Atsushi Nara ◽  
Zhanfeng Shen

Abstract Background: In August 2016, Miami-Dade County implemented Zika intervention strategies to combat a dramatic increase in incidence. Encouragingly, there was a significant decrease; howbeit, the effectiveness of these interventions remains unclear, and many countries in the world still suffer from various vector-borne diseases.Methods: To evaluate emerging vector-borne disease intervention strategies, we propose a Susceptible–Exposed–Infectious–Recovered Intervention Model (SEIR-IM) and apply the model to the 2016 Zika outbreak in Miami-Dade County, Florida as a case study. The proposed model allows for the impacts of the interventions on the transmission cycle of vector-borne diseases, and is parameterized by the Markov Chain Monte Carlo (MCMC).Results: Within the exiting literature, we find that vector-borne disease intervention strategies promote disease control in the context of human, vector, and human-vector contact. Overall, during the course of interventions, the transmission probability of humans decreases from 0.417 to 0.38 versus mosquitoes from 0.418 to 0.19. Through further analysis, the host-based controls are able to reduce the human infections to 27, while the vector-based controls are 50. On the basis of analysis of the human infections at high intervention coverage, in particular, continued scale-up of the interventions from baseline, we find that the interventions at higher coverage lead to an earlier but higher infection peak: 20 more infections and 100 days in advance.Conclusions: The three interventions result in a remarkable decline of the Zika infection in Miami-Dade County, and the host-based and contact- based controls are the most effective in reducing Zika incidence.


Sign in / Sign up

Export Citation Format

Share Document