Impairment of pupation by RNA interference-aided knockdown of Broad-Complex gene in Leptinotarsa decemlineata (Say)

2019 ◽  
Vol 109 (05) ◽  
pp. 659-668
Author(s):  
Q.-Y. Xu ◽  
Q.-W. Meng ◽  
P. Deng ◽  
K.-Y. Fu ◽  
W.-C. Guo ◽  
...  

AbstractDietary delivery of bacterially expressed double-stranded RNA (dsRNA) has a great potential for management of Leptinotarsa decemlineata. An important first step is to discover possible RNA-interference (RNAi)-target genes effective against larvae, especially the old larvae. In the present paper, five putative Broad-Complex (BrC) cDNAs (Z1-Z4, and Z6) were identified in L. decemlineata. The expression of the five LdBrC isoforms was suppressed by juvenile hormone signaling, whereas the transcription was upregulated by 20-hydroxyecdysone signaling at the fourth (final) instar larval stage. Feeding of bacterially expressed dsBrC (derived from a common fragment of the five LdBrC variants) in the third- and fourth-instar larvae successfully knocked down the target mRNAs. For the fourth-instar LdBrC RNAi hypomorphs, they had a higher larval mortality compared with the controls. Moreover, most dsBrC-fed beetles did not pupate normally. After removal of the apolysed larval cuticle, a miniature adult was found. The adult head, compound eyes, prothorax, mesothorax, metathorax were found on the dorsal view. Distinct adult cuticle pigmentation was seen on the prothorax. The mouthparts, forelegs, midlegs, and hindlegs could be observed on the ventral view of the miniature adults. For the third-instar LdBrC RNAi specimens, around 20% moribund beetles remained as prepupae and finally died. Therefore, LdBrC is among the most attractive candidate genes for RNAi to control the fourth-instar larvae in L. decemlineata.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2673 ◽  
Author(s):  
Roberto A. Camargo ◽  
Guilherme O. Barbosa ◽  
Isabella Presotto Possignolo ◽  
Lazaro E. P. Peres ◽  
Eric Lam ◽  
...  

RNA interference (RNAi), a gene-silencing mechanism that involves providing double-stranded RNA molecules that match a specific target gene sequence, is now widely used in functional genetic studies. The potential application of RNAi-mediated control of agricultural insect pests has rapidly become evident. The production of transgenic plants expressing dsRNA molecules that target essential insect genes could provide a means of specific gene silencing in larvae that feed on these plants, resulting in larval phenotypes that range from loss of appetite to death. In this report, we show that the tomato leafminer (Tuta absoluta), a major threat to commercial tomato production, can be targeted by RNAi. We selected two target genes (Vacuolar ATPase-AandArginine kinase) based on the RNAi response reported for these genes in other pest species. In view of the lack of an artificial diet forT. absoluta, we used two approaches to deliver dsRNA into tomato leaflets. The first approach was based on the uptake of dsRNA by leaflets and the second was based on “in planta-induced transient gene silencing” (PITGS), a well-established method for silencing plant genes, used here for the first time to deliverin planta-transcribed dsRNA to target insect genes.Tuta absolutalarvae that fed on leaves containing dsRNA of the target genes showed an ∼60% reduction in target gene transcript accumulation, an increase in larval mortality and less leaf damage. We then generated transgenic ‘Micro-Tom’ tomato plants that expressed hairpin sequences for both genes and observed a reduction in foliar damage byT. absolutain these plants. Our results demonstrate the feasibility of RNAi as an alternative method for controlling this critical tomato pest.


2016 ◽  
Author(s):  
Roberto A Camargo ◽  
Guilherme O Barbosa ◽  
Isabella Presotto Possignolo ◽  
Lazaro E. P. Peres ◽  
Eric Lam ◽  
...  

RNA interference (RNAi), a gene-silencing mechanism that involves providing double-stranded RNA molecules that match a specific target gene sequence, is now widely used in functional genetic studies. The potential application of RNAi-mediated control of agricultural insect pests has rapidly become evident. The production of transgenic plants expressing dsRNA molecules that target essential insect genes could provide a means of specific gene silencing in larvae that feed on these plants, resulting in larval phenotypes that range from loss of appetite to death. In this report, we show that the tomato leafminer (Tuta absoluta), a major threat to commercial tomato production, can be targeted by RNAi. We selected two target genes [Vacuolar ATPase-A and Arginine kinase] based on the RNAi response reported for these genes in other pest species. In view of the lack of an artificial diet for T. absoluta, we used two approaches to deliver dsRNA into tomato leaflets. The first approach was based on the uptake of dsRNA by leaflets and the second was based on “in planta-induced transient gene silencing” (PITGS), a well-established method for silencing plant genes, used here for the first time to deliver in planta-transcribed dsRNA to target insect genes. Tuta absoluta larvae that fed on leaves containing dsRNA of the target genes showed an ~60% reduction in target gene transcript accumulation, an increase in larval mortality and less leaf damage. We then generated transgenic ‘Micro-Tom’ tomato plants that expressed hairpin sequences for both genes and observed a reduction in foliar damage by T. absoluta in these plants. Our results demonstrate the feasibility of RNAi as an alternative method for controlling this critical tomato pest.


1996 ◽  
Vol 31 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Salvatore Arpaia ◽  
James Lashomb ◽  
George C. Hamilton ◽  
Karen Vail

Feeding of second- to fourth-instar Colorado potato beetle, Leptinotarsa decemlineata Say, on eggplant was monitored at constant temperatures of 20, 26, 29, 32 and 35° C, and at 16, 20, 27, 29, and 33° C for adults to determine the effects of temperature on consumption. For comparison, consumption by each stage relative to fourth instars was standardized to feeding equivalants. A significant non-linear relationship was found between temperature and consumption for each life stage tested. Placement of each life stage on an equivalent feeding basis showed second instars consume on average 21.5% as much foliage as fourth instars, third instars 51.2% the amount of fourth instars, and adults 39.0% the level of fourth instars. These feeding equivalents can be used to develop field sampling plans and toxicant bioassays.


2016 ◽  
Author(s):  
Roberto A Camargo ◽  
Guilherme O Barbosa ◽  
Isabella Presotto Possignolo ◽  
Lazaro E. P. Peres ◽  
Eric Lam ◽  
...  

RNA interference (RNAi), a gene-silencing mechanism that involves providing double-stranded RNA molecules that match a specific target gene sequence, is now widely used in functional genetic studies. The potential application of RNAi-mediated control of agricultural insect pests has rapidly become evident. The production of transgenic plants expressing dsRNA molecules that target essential insect genes could provide a means of specific gene silencing in larvae that feed on these plants, resulting in larval phenotypes that range from loss of appetite to death. In this report, we show that the tomato leafminer (Tuta absoluta), a major threat to commercial tomato production, can be targeted by RNAi. We selected two target genes [Vacuolar ATPase-A and Arginine kinase] based on the RNAi response reported for these genes in other pest species. In view of the lack of an artificial diet for T. absoluta, we used two approaches to deliver dsRNA into tomato leaflets. The first approach was based on the uptake of dsRNA by leaflets and the second was based on “in planta-induced transient gene silencing” (PITGS), a well-established method for silencing plant genes, used here for the first time to deliver in planta-transcribed dsRNA to target insect genes. Tuta absoluta larvae that fed on leaves containing dsRNA of the target genes showed an ~60% reduction in target gene transcript accumulation, an increase in larval mortality and less leaf damage. We then generated transgenic ‘Micro-Tom’ tomato plants that expressed hairpin sequences for both genes and observed a reduction in foliar damage by T. absoluta in these plants. Our results demonstrate the feasibility of RNAi as an alternative method for controlling this critical tomato pest.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Ya-Wen Chang ◽  
Yu-Cheng Wang ◽  
Xiao-Xiang Zhang ◽  
Junaid Iqbal ◽  
Yu-Zhou Du

The leafminer fly, Liriomyza trifolii, is an invasive pest of vegetable and horticultural crops in China. In this study, a microinjection method based on dsRNA was developed for RNA interference (RNAi) in L. trifolii using genes encoding vacuolar-ATPase (V-ATPase). Expression analysis indicated that V-ATPase B and V-ATPase D were more highly expressed in L. trifolii adults than in larvae or pupae. Microinjection experiments with dsV-ATPase B and dsV-ATPase D were conducted to evaluate the efficacy of RNAi in L. trifolii adults. Expression analysis indicated that microinjection with 100 ng dsV-ATPase B or dsV-ATPase led to a significant reduction in V-ATPase transcripts as compared to that of the dsGFP control (dsRNA specific to green fluorescent protein). Furthermore, lower dsRNA concentrations were also effective in reducing the expression of target genes when delivered by microinjection. Mortality was significantly higher in dsV-ATPase B- and dsV-ATPase D-treated insects than in controls injected with dsGFP. The successful deployment of RNAi in L. trifolii will facilitate functional analyses of vital genes in this economically-important pest and may ultimately result in new control strategies.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Alberto Villani ◽  
Luana Coltella ◽  
Stefania Ranno ◽  
Federico Bianchi di Castelbianco ◽  
Paola Maria Murru ◽  
...  

Abstract Background During the first SARS-CoV-2 pandemic phase, the sudden closure of schools was one of the main measures to minimize the spread of the virus. In the second phase, several safety procedures were implemented to avoid school closure. To evaluate if the school is a safe place, students and staff of two school complexes of Rome were monitored to evaluate the efficacy of prevention measures inside the school buildings. Methods Oral secretions specimens were collected from 1262 subjects for a total of 3431 samples, collected over a 3 months period. Detection of Coronavirus SARS-CoV-2 was performed by real-time PCR. Target genes were represented by E gene, RdRP/S gene and N gene. Results Among the 3431 samples analyzed, just 16 sample resulted as positive or low positive: 1 sample in the first month, 12 samples in the second month and 3 in the third month. In each period of evaluation, all positive children attended different classes. Conclusions Even if the school has the potential for spreading viruses, our preliminary results show the efficacy of the implementations undertaken in this setting to minimize virus diffusion. Our evidence suggests that school does not act as an amplifier for transmission of SARS-CoV-2 and can be really considered a safe place for students.


Sign in / Sign up

Export Citation Format

Share Document