scholarly journals On radial variation of holomorphic functions with lp Taylor coefficients

1990 ◽  
Vol 33 (3) ◽  
pp. 475-481
Author(s):  
D. J. Hallenbeck ◽  
K. Samotij

Suppose is holomorphic in Δ = {z:|z|<l} and (an)∈lp where 1≦p≦2. We prove that for k=1,2,…, and almost every θ. This result is sharp in the following sense: Let p∈[1,2] and ε(r) be a positive function defined on [0,1] such that limr→1-ε(r)=0. Then there exists a function holomorphic in Δ with (an)∈lp such thatfor each k>1/p.

Author(s):  
P. Kot ◽  
P. Pierzchała

AbstractThis paper deals with the so-called Radon inversion problem formulated in the following way: Given a $$p>0$$ p > 0 and a strictly positive function H continuous on the unit circle $${\partial {\mathbb {D}}}$$ ∂ D , find a function f holomorphic in the unit disc $${\mathbb {D}}$$ D such that $$\int _0^1|f(zt)|^pdt=H(z)$$ ∫ 0 1 | f ( z t ) | p d t = H ( z ) for $$z \in {\partial {\mathbb {D}}}$$ z ∈ ∂ D . We prove solvability of the problem under consideration. For $$p=2$$ p = 2 , a technical improvement of the main result related to convergence and divergence of certain series of Taylor coefficients is obtained.


1987 ◽  
Vol 35 (3) ◽  
pp. 471-479
Author(s):  
H. O. Kim ◽  
S. M. Kim ◽  
E. G. Kwon

For 0 < p < ∞ and 0 ≤a; ≤ 1, we define a space Hp, a of holomorphic functions on the unit disc of the complex plane, for which Hp, 0 = H∞, the space of all bounded holomorphic functions, and Hp, 1 = Hp, the usual Hardy space. We introduce a weak type operator whose boundedness extends the well-known Hardy-Littlewood embedding theorem to Hp, a, give some results on the Taylor coefficients of the functions of Hp, a and show by an example that the inner factor cannot be divisible in Hp, a.


1962 ◽  
Vol 14 ◽  
pp. 334-348 ◽  
Author(s):  
G. T. Cargo

In this paper, we shall be concerned with bounded, holomorphic functions of the formwhere(1)(2)and(3)B(z{an}) is called a Blaschke product, and any sequence {an} which satisfies (2) and (3) is called a Blaschke sequence. For a general discussion of the properties of Blaschke products, see (18, pp. 271-285) or (14, pp. 49-52).According to a theorem due to Riesz (15), a Blaschke product has radial limits of modulus one almost everywhere on C = {z: |z| = 1}. Moreover, it is common knowledge that, if a Blaschke product has a radial limit at a point, then it also has an angular limit at the point (see 14, p. 19 and 6, p. 457).


1979 ◽  
Vol 31 (6) ◽  
pp. 1269-1280 ◽  
Author(s):  
Jacob Burbea

Let D be a bounded plane domain and let Lp(D) stand for the usual Lebesgue spaces of functions with domain D, relative to the area Lebesque measure dσ(z) = dxdy. The class of all holomorphic functions in D will be denoted by H(D) and we write Bp(D) = Lp(D) ∩ H(D). Bp(D) is called the Bergman p-space and its norm is given byLet be the Bergman kernel of D and consider the Bergman projection(1.1)It is well known that P is not bounded on Lp(D), p = 1, ∞, and moreover, it can be shown that there are no bounded projections of L∞(Δ) onto B∞(Δ).


1979 ◽  
Vol 31 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Frank Forelli

1.1. We will denote by B the open unit ball in Cn, and we will denote by H(B) the class of all holomorphic functions on B. LetThus N(B) is convex (and compact in the compact open topology). We think that the structure of N(B) is of interest and importance. Thus we proved in [1] that if(1.1)if(1.2)and if n≧ 2, then g is an extreme point of N(B). We will denote by E(B) the class of all extreme points of N(B). If n = 1 and if (1.2) holds, then as is well known g ∈ E(B) if and only if(1.3)


1979 ◽  
Vol 31 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Gerard Mcdonald

Let S denote the unit sphere in Cn, B the (open) unit ball in Cn and H∞(B) the collection of all bounded holomorphic functions on B. For f ∈ H∞(B) the limitsexist for almost every ζ in S, and the map ƒ → ƒ* defines an isometric isomorphism from H∞(B) onto a closed subalgebra of L∞(S), denoted H∞(S). (The only measure on S we will refer to in this paper is the Lebesgue measure, dσ, generated by Euclidean surface area.) Rudin has shown in [4] that the spaces H∞(B) + C(B) and H∞(S) + C(S) are Banach algebras in the sup norm. In this paper we will show that the maximal ideal space of H∞(B) + C(B), Σ (H∞(B) + C(B)), is naturally homeomorphic to Σ (H∞(B)) and that Z (H∞(S) + C(S)) is naturally homeomorphic to Σ (H∞(S))\B.


1982 ◽  
Vol 34 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Eric Sawyer

The main purpose of this note is to prove a special case of the following conjecture.Conjecture. If F is holomorphic on the unit ball Bn in Cn and has positive real part, then F is in Hp(Bn) for 0 < p < ½(n + 1).Here Hp(Bn) (0 < p < ∞) denote the usual Hardy spaces of holomorphic functions on Bn. See below for definitions. We remark that the conjecture is known for 0 < p < 1 and that some evidence for it already exists in the literature; for example [1, Theorems 3.11 and 3.15] where it is shown that a particular extreme element of the convex cone of functionsis in Hp(B2) for 0 < p < 3/2.


2011 ◽  
Vol 85 (2) ◽  
pp. 307-314 ◽  
Author(s):  
ZHANGJIAN HU

AbstractLet Ap(φ) be the pth Bergman space consisting of all holomorphic functions f on the unit ball B of ℂn for which $\|f\|^p_{p,\varphi }= \int _B |f(z)|^p \varphi (z) \,dA(z)\lt +\infty $, where φ is a given normal weight. Let Tg be the extended Cesàro operator with holomorphic symbol g. The essential norm of Tg as an operator from Ap (φ) to Aq (φ) is denoted by $\|T_g\|_{e, A^p (\varphi )\to A^q (\varphi )} $. In this paper it is proved that, for p≤q, with 1/k=(1/p)−(1/q) , where ℜg(z) is the radial derivative of g; and for p>q, with 1/s=(1/q)−(1/p) .


2018 ◽  
Vol 105 (1) ◽  
pp. 34-45
Author(s):  
JÜRGEN GRAHL ◽  
TOMER MANKET ◽  
SHAHAR NEVO

We show that the family of all holomorphic functions $f$ in a domain $D$ satisfying $$\begin{eqnarray}\frac{|f^{(k)}|}{1+|f|}(z)\leq C\quad \text{for all }z\in D\end{eqnarray}$$ (where $k$ is a natural number and $C>0$) is quasi-normal. Furthermore, we give a general counterexample to show that for $\unicode[STIX]{x1D6FC}>1$ and $k\geq 2$ the condition $$\begin{eqnarray}\frac{|f^{(k)}|}{1+|f|^{\unicode[STIX]{x1D6FC}}}(z)\leq C\quad \text{for all }z\in D\end{eqnarray}$$ does not imply quasi-normality.


Sign in / Sign up

Export Citation Format

Share Document