scholarly journals Some algebraic properties of F(X) and K(X)

1975 ◽  
Vol 19 (4) ◽  
pp. 353-361 ◽  
Author(s):  
Freda E. Alexander

Throughout we consider operators on a reflexive Banach space X. We consider certain algebraic properties of F(X), K(X) and B(X) with the general aim of examining their dependence on the possession by X of the approximation property. B(X) (resp. K(X)) denotes the algebra of all bounded (resp. compact) operators on X and F(X) denotes the closure in B(X) of its finite rank operators. The two questions we consider are:(1) Is K(X) equal to the set of all operators in B(X) whose right and left multiplication operators on F(X) (or on B(X)) are weakly compact?(2) Is F(X) a dual algebra?

1969 ◽  
Vol 1 (3) ◽  
pp. 397-401 ◽  
Author(s):  
S.R. Caradus

The following sufficient condition is obtained for the uniform approximability of compact operators on a reflexive Banach space by operators of finite rank: if S is the unit ball of X and ø: X* → C(S) is the imbedding ø(x*)x = x*(x) then we require ø(X*) to be complemented in C(S).


2004 ◽  
Vol 77 (1) ◽  
pp. 91-110 ◽  
Author(s):  
Åsvald Lima ◽  
Eve Oja

AbstractWe give an example of a Banach space X such that K (X, X) is not an ideal in K (X, X**). We prove that if z* is a weak* denting point in the unit ball of Z* and if X is a closed subspace of a Banach space Y, then the set of norm-preserving extensions H B(x* ⊗ z*) ⊆ (Z*, Y)* of a functional x* ⊗ Z* ∈ (Z ⊗ X)* is equal to the set H B(x*) ⊗ {z*}. Using this result, we show that if X is an M-ideal in Y and Z is a reflexive Banach space, then K (Z, X) is an M-ideal in K(Z, Y) whenever K (Z, X) is an ideal in K (Z, Y). We also show that K (Z, X) is an ideal (respectively, an M-ideal) in K (Z, Y) for all Banach spaces Z whenever X is an ideal (respectively, an M-ideal) in Y and X * has the compact approximation property with conjugate operators.


1989 ◽  
Vol 39 (3) ◽  
pp. 353-359 ◽  
Author(s):  
José Aguayo ◽  
José Sánchez

Let X be a completely regular space. We denote by Cb(X) the Banach space of all real-valued bounded continuous functions on X endowed with the supremum-norm.In this paper we prove some characterisations of weakly compact operators defined from Cb(X) into a Banach space E which are continuous with respect to fit, βt, βr and βσ introduced by Sentilles.We also prove that (Cb,(X), βi), i = t, τσ , has the Dunford-Pettis property.


2012 ◽  
Vol 110 (1) ◽  
pp. 45 ◽  
Author(s):  
Åsvald Lima ◽  
Vegard Lima ◽  
Eve Oja

Let $X$ be a Banach space and let $\mathcal I$ be the Banach operator ideal of integral operators. We prove that $X$ has the $\lambda$-bounded approximation property ($\lambda$-BAP) if and only if for every operator $T\in \mathcal I(X,C[0,1]^*)$ there exists a net $(S_\alpha)$ of finite-rank operators on $X$ such that $S_\alpha\to I_X$ pointwise and 26767 \limsup_\alpha\|TS_\alpha\|_{\mathcal I}\leq\lambda\|T\|_{\mathcal I}. 26767 We also prove that replacing $\mathcal I$ by the ideal $\mathcal N$ of nuclear operators yields a condition which is equivalent to the weak $\lambda$-BAP.


2013 ◽  
Vol 56 (3) ◽  
pp. 503-509 ◽  
Author(s):  
Qingying Bu

AbstractFor Banach spaces X and Y, we show that if X* and Y are weakly sequentially complete and every weakly compact operator from X to Y is compact, then the space of all compact operators from X to Y is weakly sequentially complete. The converse is also true if, in addition, either X* or Y has the bounded compact approximation property.


2021 ◽  
Vol 8 (1) ◽  
pp. 158-175
Author(s):  
B.P. Duggal

Abstract A generalisation of m-expansive Hilbert space operators T ∈ B(ℋ) [18, 20] to Banach space operators T ∈ B(𝒳) is obtained by defining that a pair of operators A, B ∈ B(𝒳) is (m, P)-expansive for some operator P ∈ B(𝒳) if Δ A,B m (P)= ( I - L A R B ) m ( P ) = ∑ j = 0 m ( - 1 ) j ( j m ) {\left( {I - {L_A}{R_B}} \right)^m}\left( P \right) = \sum\nolimits_{j = 0}^m {{{\left( { - 1} \right)}^j}\left( {_j^m} \right)} AjPBj ≤0; LA(X) = AX and RB(X)=XB. Unlike m-isometric and m-left invertible operators, commuting products and perturbations by commuting nilpotents of (m, I)-expansive operators do not result in expansive operators: using elementary algebraic properties of the left and right multiplication operators, a sufficient condition is proved. For Drazin invertible A and B ∈ B(ℋ), with Drazin inverses Ad and Bd, a sufficient condition proving (Ad, Bd) ^ (A, B) is (m − 1, P)-isometric (resp., (m − 1, P)-contractive) for m even (resp., m odd) is given, and a Banach space analogue of this result is proved.


Author(s):  
KUN TU

Abstract We study super weakly compact operators through a quantitative method. We introduce a semi-norm $\sigma (T)$ of an operator $T:X\to Y$ , where X, Y are Banach spaces, the so-called measure of super weak noncompactness, which measures how far T is from the family of super weakly compact operators. We study the equivalence of the measure $\sigma (T)$ and the super weak essential norm of T. We prove that Y has the super weakly compact approximation property if and and only if these two semi-norms are equivalent. As an application, we construct an example to show that the measures of T and its dual $T^*$ are not always equivalent. In addition we give some sequence spaces as examples of Banach spaces having the super weakly compact approximation property.


1982 ◽  
Vol 25 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Kok-Keong Tan

AbstractA closed convex subset X of a Banach space E is said to have (i) asymptotic normal structure if for each bounded closed convex subset C of X containing more than one point and for each sequence in C satisfying ‖xn − xn + 1‖ → 0 as n → ∞, there is a point x ∈ C such that ; (ii) close-to-normal structure if for each bounded closed convex subset C of X containing more than one point, there is a point x ∈ C such that ‖x − y‖ < diam‖ ‖(C) for all y ∈ C While asymptotic normal structure and close-to-normal structure are both implied by normal structure, they are not related. The example that a reflexive Banach space which has asymptotic normal structure but not close-to normal structure provides us a non-empty weakly compact convex set which does not have close-to-normal structure. This answers an open question posed by Wong in [9] and hence also provides us a Kannan map defined on a weakly compact convex set which does not have a fixed point.


2018 ◽  
Vol 61 (03) ◽  
pp. 545-555 ◽  
Author(s):  
JU MYUNG KIM

AbstractGiven a Banach operator ideal $\mathcal A$, we investigate the approximation property related to the ideal of $\mathcal A$-compact operators, $\mathcal K_{\mathcal A}$-AP. We prove that a Banach space X has the $\mathcal K_{\mathcal A}$-AP if and only if there exists a λ ≥ 1 such that for every Banach space Y and every R ∈ $\mathcal K_{\mathcal A}$(Y, X), $$ \begin{equation} R \in \overline {\{SR : S \in \mathcal F(X, X), \|SR\|_{\mathcal K_{\mathcal A}} \leq \lambda \|R\|_{\mathcal K_{\mathcal A}}\}}^{\tau_{c}}. \end{equation} $$ For a surjective, maximal and right-accessible Banach operator ideal $\mathcal A$, we prove that a Banach space X has the $\mathcal K_{(\mathcal A^{{\rm adj}})^{{\rm dual}}}$-AP if the dual space of X has the $\mathcal K_{\mathcal A}$-AP.


Sign in / Sign up

Export Citation Format

Share Document