scholarly journals Asymptotic behaviour and blow-up of some unbounded solutions for a semilinear heat equation

1996 ◽  
Vol 39 (1) ◽  
pp. 81-96
Author(s):  
D. E. Tzanetis

The initial-boundary value problem for the nonlinear heat equation u1 = Δu + λf(u) might possibly have global classical unbounded solutions, for some “critical” initial data . The asymptotic behaviour of such solutions is studied, when there exists a unique bounded steady state w(x;λ) for some values of λ We find, for radial symmetric solutions, that u*(r, t)→w(r) for any 0<r≤l but supu*(·, t) = u*(0, t)→∞, as t→∞. Furthermore, if , where is some such critical initial data, then û = u(x, t; û0) blows up in finite time provided that f grows sufficiently fast.

2005 ◽  
Vol 2005 (2) ◽  
pp. 87-94 ◽  
Author(s):  
Salim A. Messaoudi

We consider an initial boundary value problem related to the equationut−Δu+∫0tg(t−s)Δu(x,s)ds=|u|p−2uand prove, under suitable conditions ongandp, a blow-up result for certain solutions with positive initial energy.


2021 ◽  
Vol 4 (6) ◽  
pp. 1-12
Author(s):  
Kentaro Fujie ◽  
◽  
Jie Jiang ◽  

<abstract><p>It was shown that unbounded solutions of the Neumann initial-boundary value problem to the two-dimensional Keller–Segel system can be induced by initial data having large negative energy if the total mass $ \Lambda \in (4\pi, \infty)\setminus 4\pi \cdot \mathbb{N} $ and an example of such an initial datum was given for some transformed system and its associated energy in Horstmann–Wang (2001). In this work, we provide an alternative construction of nonnegative nonradially symmetric initial data enforcing unbounded solutions to the original Keller–Segel model.</p></abstract>


2002 ◽  
Vol 13 (3) ◽  
pp. 321-335 ◽  
Author(s):  
YUNKANG LIU

A nonlinear forward-backward heat equation with a regularization term was proposed by Barenblatt et al. [1, 2] to model the heat and mass exchange in stably stratified turbulent shear flow. It was proven to be well-posed in the case of given initial and Neumann boundary conditions. However, the solution was found to have an unphysical discontinuity with certain smooth initial functions. In this paper, a nonlinear heat equation with a time delay originally used by Barenblatt et al. [1, 2] to derive their model is investigated. The same type of initial-boundary value problem is shown to have a unique smooth global solution when the initial function is reasonably smooth. Numerical examples are used to demonstrate that its solution forms step-like profiles in finite times. A semi-discretization of the initial-boundary value problem is proved to have a unique asymptotically and globally stable equilibrium.


Author(s):  
Youshan Tao ◽  
Michael Winkler

This study considers a model for oncolytic virotherapy, as given by the reaction–diffusion–taxis system \[\begin{eqnarray*} \left\{ \begin{array}{l} u_t = \Delta u - \nabla (u\nabla v)-\rho uz, \\ v_t = - (u+w)v, \\ w_t = D_w \Delta w - w + uz, \\ z_t = D_z \Delta z - z - uz + \beta w, \end{array} \right. \end{eqnarray*}\] in a smoothly bounded domain Ω ⊂ ℝ2, with parameters D w  > 0, D z  > 0, β > 0 and ρ ⩾ 0. Previous analysis has asserted that for all reasonably regular initial data, an associated no-flux type initial-boundary value problem admits a global classical solution, and that this solution is bounded if β < 1, whereas whenever β > 1 and $({1}/{|\Omega |})\int _\Omega u(\cdot ,0) > 1/(\beta -1)$ , infinite-time blow-up occurs at least in the particular case when ρ = 0. In order to provide an appropriate complement to this, the current study reveals that for any ρ ⩾ 0 and arbitrary β > 0, at each prescribed level γ ∈ (0, 1/(β − 1)+) one can identify an L∞-neighbourhood of the homogeneous distribution (u, v, w, z) ≡ (γ, 0, 0, 0) within which all initial data lead to globally bounded solutions that stabilize towards the constant equilibrium (u∞, 0, 0, 0) with some u∞ > 0.


2003 ◽  
Vol 3 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Dejan Bojović

Abstract In this paper we consider the first initial boundary-value problem for the heat equation with variable coefficients in a domain (0; 1)x(0; 1)x(0; T]. We assume that the solution of the problem and the coefficients of the equation belong to the corresponding anisotropic Sobolev spaces. Convergence rate estimate which is consistent with the smoothness of the data is obtained.


2002 ◽  
Vol 13 (3) ◽  
pp. 337-351 ◽  
Author(s):  
N. I. KAVALLARIS ◽  
C. V. NIKOLOPOULOS ◽  
D. E. TZANETIS

We consider an initial boundary value problem for the non-local equation, ut = uxx+λf(u)/(∫1-1f (u)dx)2, with Robin boundary conditions. It is known that there exists a critical value of the parameter λ, say λ*, such that for λ > λ* there is no stationary solution and the solution u(x, t) blows up globally in finite time t*, while for λ < λ* there exist stationary solutions. We find, for decreasing f and for λ > λ*, upper and lower bounds for t*, by using comparison methods. For f(u) = e−u, we give an asymptotic estimate: t* ∼ tu(λ−λ*)−1/2 for 0 < (λ−λ*) [Lt ] 1, where tu is a constant. A numerical estimate is obtained using a Crank-Nicolson scheme.


2006 ◽  
Vol 61 (5-6) ◽  
pp. 235-238
Author(s):  
Necat Polat ◽  
Doğan Kaya

We consider the blow up of solution to the initial boundary value problem for the generalized Boussinesq equation with damping term. Under some assumptions we prove that the solution with negative initial energy blows up in finite time


2010 ◽  
Vol 07 (02) ◽  
pp. 297-316 ◽  
Author(s):  
C. BOURDARIAS ◽  
M. GISCLON ◽  
S. JUNCA

We consider an initial boundary value problem for a 2 × 2 system of conservation laws modeling heatless adsorption of a gaseous mixture with two species and instantaneous exchange kinetics, close to the system of chromatography. In this model the velocity is not constant because the sorption effect is taken into account. Exchanging the roles of the x, t variables we obtain a strictly hyperbolic system with a zero eigenvalue. Our aim is to construct a solution with a velocity which blows up at the corresponding characteristic "hyperbolic boundary" {t = 0}.


Sign in / Sign up

Export Citation Format

Share Document