scholarly journals Water pressure and basal sliding on Storglaciären, northern Sweden

1995 ◽  
Vol 41 (138) ◽  
pp. 232-240 ◽  
Author(s):  
Peter Jansson

AbstractThe subglacial hydrology of the ablation area of Storglaciären, a small valley glacier in northern Sweden, is dramatically affected by a subglacial ridge, or riegel. Water pressures above this riegel are relatively constant, while down-glacier from it they vary significantly. The lower part of the glacier accelerates in response to peaks in basal water pressure. The upper part may be weakly coupled to the lower part during these peaks.A power-law fit of observed basal water pressures and measured surface velocities yieldswhereusis the surface velocity andPEis the effective water pressure (ice overburden pressure minus subglacial water pressure). Data from Findelengletscher, reported by Iken and Bindschadler (1986), yield an identical exponent and a coefficient one order of magnitude larger. The similar exponent implies that the process producing the velocity variations on both glaciers is similar. The variations in velocity are inferred to be due to hydraulic jacking on both glaciers.

1995 ◽  
Vol 41 (138) ◽  
pp. 232-240 ◽  
Author(s):  
Peter Jansson

AbstractThe subglacial hydrology of the ablation area of Storglaciären, a small valley glacier in northern Sweden, is dramatically affected by a subglacial ridge, or riegel. Water pressures above this riegel are relatively constant, while down-glacier from it they vary significantly. The lower part of the glacier accelerates in response to peaks in basal water pressure. The upper part may be weakly coupled to the lower part during these peaks.A power-law fit of observed basal water pressures and measured surface velocities yieldswhere us is the surface velocity and PE is the effective water pressure (ice overburden pressure minus subglacial water pressure). Data from Findelengletscher, reported by Iken and Bindschadler (1986), yield an identical exponent and a coefficient one order of magnitude larger. The similar exponent implies that the process producing the velocity variations on both glaciers is similar. The variations in velocity are inferred to be due to hydraulic jacking on both glaciers.


2021 ◽  
Author(s):  
Elise Kazmierczak ◽  
Sainan Sun ◽  
Frank Pattyn

<p>Sliding laws determine to a large extent the sensitivity of the Antarctic ice sheet on centennial time scales (Pattyn, 2017, Bulthuis et al, 2019, Sun et al, 2020). Especially the contrast between linear and plastic sliding laws makes the latter far more responsive to changes at the grounding line. However, most studies neglect subglacial processes linked to those sliding laws. Subglacial hydrology may also play a role in modulating the amplitude of the reaction of marine ice sheets to forcing. Subglacial processes influence the effective pressure at the base. For a hard bed system, the latter can be defined by the ice overburden pressure minus the subglacial water pressure determined by routing of subglacial meltwater through a thin film. For soft-bed systems, the effective pressure is determined from till properties and physics. Here we investigate a wide range of subglacial processes and hydrology used in ice sheet models and implemented them in one ice sheet model (f.ETISh).</p><p> </p><p>The subglacial hydrology models and till deformation models are coupled to different sliding and friction laws (linear, power law, Coulomb), leading to 24 different representations. The Antarctic ice sheet model was then forced by the ISMIP6 forcing in surface mass balance and ocean temperature until 2100 for different RCP scenarios (Seroussi et al., 2020). Furthermore, to sample the intrinsic sensitivity we performed the ABUMIP experiments (Sun et al., 2020) for the full set of subglacial characteristics.  Results demonstrate that the type of sliding law is the most determining factor in the sensitivity of the ice sheet, modulated by the subglacial hydrology.</p>


1997 ◽  
Vol 43 (143) ◽  
pp. 172-179 ◽  
Author(s):  
Roger LeB. Hooke ◽  
Brian Hanson ◽  
Neal R. Iverson ◽  
Peter Jansson ◽  
Urs H. Fischer

AbstractIn order to study, in situ, the rheology of a deforming subglacial till, various instruments were emplaced in till beneath Storglaciären, Sweden. Boreholes were used to gain access to the till beneath about 100 m of ice. Tiltmeters provided an estimate of the shear strain rate in the till. Two other instruments yielded measures of till strength. In addition, water pressures were recorded in boreholes and in the till, a computer-controlled distance meter provided an effectively continuous record of the surface velocity and data from frequent surveys of a stake network were used to estimate the mean basal drag, based on a force-balance calculation.Tilt rates varied directly with effective pressure, so decreases in water pressure apparently increased the coupling between the glacier and the bed. Surface speed was either out of phase with tilt or varied independently of tilt. Thus, increases in speed were apparently a consequence either of longitudinal coupling or of reduced coupling between the glacier and the bed; they were not a result of till deformation! Till strength varied directly with effective pressure, which is consistent with it being a Mohr – Coulomb, or frictional material. The devices measuring till strength are presumed to have been pulled through the till at a speed that varied in phase with the surface speed but till strength did not vary systematically with surface speed. This implies that the residual strength of the till is insensitive to strain rate. Thus, the appropriate constitutive equation for till rheology may be of the form:where k is a constant. This is consistent with experimental data reported in the geotechnical literature.


1978 ◽  
Vol 20 (84) ◽  
pp. 469-508 ◽  
Author(s):  
H. F. Engelhardt ◽  
W. D. Harrison ◽  
Barclay Kamb

AbstractBore-hole photography demonstrates that the glacier bed was reached by cable-tool drilling in five bore holes in Blue Glacier, Washington. Basal sliding velocities measured by bore-hole photography, and confirmed by inclinometry, range from 0.3 to 3.0 cm/d and average 1.0 cm/d, much less than half the surface velocity of 15 cm/d. Sliding directions deviate up to 30° from the surface flow direction. Marked lateral and time variations in sliding velocity occur. The glacier bed consists of bedrock overlain by a ≈ 10 cm layer ofactive subsole drift, which intervenes between bedrock and ice sole and is actively involved in the sliding process. It forms a mechanically and visibly distinct layer, partially to completely ice-free, beneath the zone of debris-laden ice at the base of the glacier. Internal motions in the subsole drift include rolling of clasts caught between bedrock and moving ice. The largest sliding velocities occur in places where a basal gap, of width up to a few centimeters, intervenes between ice sole and subsole drift. The gap may result from ice—bed separation due to pressurization of the bed by bore-hole water. Water levels in bore holes reaching the bed drop to the bottom when good hydraulic connection is established with sub-glacial conduits; the water pressure in the conduits is essentially atmospheric. Factors responsible for the generally low sliding velocities are high bed roughness due to subsole drift, partial support of basal shear stress by rock friction, and minimal basal cavitation because of low water pressure in subglacial conduits. The observed basal conditions do not closely correspond to those assumed in existing theories of sliding.


1988 ◽  
Vol 34 (117) ◽  
pp. 217-227 ◽  
Author(s):  
Sheliah Z. Seaberg ◽  
John Z. Seaberg ◽  
Roger Leb. Hooke ◽  
Daniel W. Wiberg

AbstractDuring the 1984 and 1985 melt seasons, flow velocities and dispersive characteristics of the englacial and subglacial hydraulic system on Storglaciären, a small valley glacier in northern Sweden, were studied with the use of dye-trace tests. Similar tests conducted on one of the two principal pro-glacial streams provided a basis for comparison of the combined englacial-subglacial system with the pro-glacial one. Velocities in the two systems were broadly comparable after compensating for the effect of slope differences. However, velocities in the glacial conduits increased almost linearly with discharge. Analysis suggests that this can be explained by an increase in water pressure in the conduits, combined with a decrease in effective sinuosity, as discharge increases. Dispersivity (the ratio of the dispersion coefficient to the water velocity) in the glacial system is high early in the season but decreases progressively during July. This is believed to reflect a change from an extensively braided to a more integrated drainage system. Dispersivity is only slightly lower in the pro-glacial streams than in the late-season glacial conduits, suggesting similar degrees of braiding. However, retardation of dye due to temporary storage is greater in the glacial conduits. This suggests that the glacial streams have a larger number of stable eddies in which dye can be trapped for extended periods of time.


1986 ◽  
Vol 32 (112) ◽  
pp. 439-445 ◽  
Author(s):  
Joseph S. Walder

AbstractA theoretical model is developed to describe the steady-state behavior of interconnected, water-filled cavities at the glacier bed. Physically plausible cavities should contain constrictions along the flow path, with flow in the wider sections being relatively sluggish. Mean flow rates in cavities may be at least one order of magnitude less than in channels incised into the basal ice (R channels). Melting due to viscous dissipation - the process that allows R channels to exist - probably plays a minor or negligible role, as compared to glacier sliding, in determining the size of cavities. Furthermore, a system of subglacial cavities should not show a tendency for localization of flow in a few main conduits, as does an R-channel system. If water pressure rises to within several bars of overburden pressure, the rate of cavity closure by creep falls below the rate of cavity opening by sliding and melting, with cavities then becoming unstable. Subsequent evolution of the drainage system should depend upon the total melt-water flux. Circumstances may arise in which cavities and channels act as conduits for melt water; such a configuration would probably show unusual transient behavior.


2011 ◽  
Vol 5 (3) ◽  
pp. 659-672 ◽  
Author(s):  
M. Jay-Allemand ◽  
F. Gillet-Chaulet ◽  
O. Gagliardini ◽  
M. Nodet

Abstract. Variegated Glacier (Alaska) is known to surge periodically after a sufficient amount of cumulative mass balance is reached, but this observation is difficult to link with changes in the basal conditions. Here, using a 10-yr dataset, consisting of surface topography and surface velocity observations along a flow line for 25 dates, we have reconstructed the evolution of the basal conditions prior to and during the 1982–1983 surge. The model solves the full-Stokes problem along the central flow line using the finite element method. For the 25 dates of the dataset, the basal friction parameter distribution is inferred using the inverse method proposed by Arthern and Gudmundsson (2010). This method is here slightly modified by incorporating a regularisation term in the cost function to avoid short wavelength changes in the friction parameter. Our results indicate that dramatic changes in the basal conditions occurred between 1973 to 1983. Prior to the surge, periodic changes can be observed between winter and summer, with a regular increase of the sliding from 1973 to 1982. During the surge, the basal friction decreased dramatically and an area of very low friction moved from the upper part of the glacier to its terminus. Using a more complex friction law, these changes in basal sliding are then interpreted in terms of basal water pressure. Our results support that dramatic changes took place in the subglacial drainage system of Variegated Glacier, moving from a relatively efficient drainage system prior to the surge to an inefficient one during the surge. By reconstructing the water pressure evolution at the base of the glacier it is possible to propose a scenario for the hydrological history leading to the occurrence of a surge.


2015 ◽  
Vol 9 (2) ◽  
pp. 2397-2429 ◽  
Author(s):  
S. H. R. Rosier ◽  
G. H. Gudmundsson ◽  
J. A. M. Green

Abstract. Observations show that the flow of Rutford Ice Stream (RIS) is strongly modulated by the ocean tides, with the strongest tidal response at the 14.77 day tidal period (Msf). This is striking because this period is absent in the tidal forcing. A number of mechanisms have been proposed to account for this effect, yet previous modeling studies have struggled to match the observed large amplitude and decay length scale. We use a nonlinear 3-D viscoelastic full-Stokes model of ice-stream flow to investigate this open issue. We find that the long period Msf modulation of ice-stream velocity observed in data cannot be reproduced quantitatively without including a coupling between basal sliding and tidal subglacial water pressure variations. Furthermore, the subglacial water system must be highly conductive and at low effective pressure, and the relationship between sliding velocity and effective pressure highly nonlinear in order for the model results to match GPS measurements. Hydrological and basal sliding model parameters that produced a best fit to observations were a mean effective pressure N of 105 kPa, subglacial drainage system conductivity K of 7 × 109 m2d-1, with sliding law exponents m = 3 and q =10. Coupled model results show the presence of tides result in a ~ 12% increase in mean surface velocity. Observations of tidally-induced variations in flow of ice-streams provide stronger constraints on basal sliding processes than provided by any other set of measurements.


2005 ◽  
Vol 51 (175) ◽  
pp. 588-600 ◽  
Author(s):  
D.M. Rippin ◽  
I.C. Willis ◽  
N.S. Arnold ◽  
A.J. Hodson ◽  
M. Brinkhaus

AbstractWe present results of a detailed investigation of surface motion across the tongue of a polythermal glacier, midre Lovenbreen, Svalbard, during the 1999 summer. Surface velocities in the warm-based upper tongue increased during periods of enhanced surface melting and rainfall events, and force-balance analysis indicates that these velocity variations were locally forced, probably by fluctuations in subglacial water pressure. Surface speed-ups were also observed on the cold-based lower tongue (which acted as a sticky spot, through which there was minimal subglacial drainage for most of the summer), but these were largely non-locally forced by longitudinal coupling to the faster-moving ice up-glacier. On one occasion, however, a large, rapid input of surface water to the glacier reduced the basal drag beneath the cold-based lower tongue, presumably due to hydraulic jacking. This resulted in locally forced enhanced surface velocities across the entire tongue, accompanied by a breaching of the lower tongue and an outburst of subglacially stored water.


2020 ◽  
Author(s):  
Andrea Walpersdorf ◽  
Christian Vincent ◽  
Florent Gimbert ◽  
Agnès Helmstetter ◽  
Luc Moreau ◽  
...  

<p>Five continuous GNSS stations monitor the Argentière glacier surface motion on a longitudinal profile at 2400 m altitude over a full melt season, from April to November 2019. High precision data analysis is enabled by a close-by reference station on the bedrock. This GNSS survey is part of the SAUSSURE project 2019-2022 that aims at increasing our knowledge on the physics of glacier basal sliding, by improving friction laws and validating them in a natural environment. The Argentière glacier is particularly interesting due to its long-term subglacial observatory measuring basal sliding velocity and subglacial discharge. The SAUSSURE project furthermore includes seismic, tiltmeter and piezometer measurements. The bedrock topography is obtained from a Ground Penetrating Radar.</p><p>The dense GNSS station setup permits to validate individual antenna movements. We then retrieve horizontal and vertical surface velocities on daily and sub-daily time scales. We can deduce strain rates in between the stations and their evolution in time, and relate this observable with the vertical surface motions. The confrontation of the GNSS data with independent observations allows analyzing the surface motions searching for glacier surges that combine horizontal speed-ups combined with uplift due to bed separation of the ice sheet. These events could give indications about cavity growth in spring. We will also try to investigate sub-daily motions that seem to occur in daily cycles in summer, as hinted at by the basal sliding measurements. These daily cycles are usually also seen in the seismic activity. The phase of the different features varies with respect to the daily cycles of temperature and sub-glacial water pressure. These phase offsets can give us indices on eventual mechanisms of sliding at the bedrock interface. The GNSS measurements represent a rare in situ data set that can contribute to better apprehend mechanisms of basal sliding and to provide high-resolution 3D constraints on physical models of glacier flow.</p>


Sign in / Sign up

Export Citation Format

Share Document