scholarly journals The natural partial order on an abundant semigroup

1987 ◽  
Vol 30 (2) ◽  
pp. 169-186 ◽  
Author(s):  
Mark V. Lawson

In this paper we will study the properties of a natural partial order which may bedefined on an arbitrary abundant semigroup: in the case of regular semigroups werecapture the order introduced by Nambooripad [24]. For abelian PP rings our order coincides with a relation introduced by Sussman [25], Abian [1, 2] and further studied by Chacron [7]. Burmistroviˇ [6] investigated Sussman's order on separative semigroups. In the abundant case his order coincides with ours: some order theoretic properties of such semigroups may be found in a paper by Burgess [5].

1980 ◽  
Vol 29 (4) ◽  
pp. 475-503 ◽  
Author(s):  
D. B. McAlister

AbstractIn this paper we obtain necessary and sufficient conditions on a regular semigroup in order that it should be an idempotent separating homomorphic image of a full subsemigroup of the direct product of a group and a fundamental or combinatorial regular semigroup. The main tool used is the concept of a prehomomrphism θ: S → T between regular semigroups. This is a mapping such that (ab) θ ≦ aθ bθ in the natural partial order on T.


Author(s):  
Chunhua Li ◽  
Zhi Pei ◽  
Baogen Xu

Type B semigroups are generalizations of inverse semigroups, and every inverse semigroup admits an [Formula: see text]-unitary cover (M. Petrich, Inverse Semigroups (Wiley, New York, 1984)). Motivated by studying [Formula: see text]-unitary cover for inverse semigroups, and as a continuation of Petrich’s works in inverse semigroups, in this paper, we first introduce the concept of ∗-prehomomorphism of a type B semigroup. After obtaining some basic properties, we get some structure theorems and give some conditions for a type B semigroup which is constructed by using the ∗-prehomomorphism to be proper. In particular, we introduce the notion of [Formula: see text]-unitary good cover for an abundant semigroup, and prove that every type B semigroup with compatible natural partial order admits an [Formula: see text]-unitary good cover.


2010 ◽  
Vol 17 (02) ◽  
pp. 229-240 ◽  
Author(s):  
Mario Petrich

Any semigroup S can be embedded into a semigroup, denoted by ΨS, having some remarkable properties. For general semigroups there is a close relationship between local submonoids of S and of ΨS. For a number of usual semigroup properties [Formula: see text], we prove that S and ΨS simultaneously satisfy [Formula: see text] or not. For a regular semigroup S, the relationship of S and ΨS is even closer, especially regarding the natural partial order and Green's relations; in addition, every element of ΨS is a product of at most four idempotents. For completely regular semigroups S, the relationship of S and ΨS is still closer. On the lattice [Formula: see text] of varieties of completely regular semigroups [Formula: see text] regarded as algebras with multiplication and inversion, by means of ΨS, we define an operator, denoted by Ψ. We compare Ψ with some of the standard operators on [Formula: see text] and evaluate it on a small sublattice of [Formula: see text].


1980 ◽  
Vol 23 (3) ◽  
pp. 249-260 ◽  
Author(s):  
K. S. Subramonian Nambooripad

It is well-known that on an inverse semigroup S the relation ≦ defined by a ≦ b if and only if aa−1 = ab−1 is a partial order (called the natural partial order) on S and that this relation is closely related to the global structure of S (cf. (1, §7.1), (10)). Our purpose here is to study a partial order on regular semigroups that coincides with the relation defined above on inverse semigroups. It is found that this relation has properties very similar to the properties of the natural partial order on inverse semigroups. However, this relation is not, in general, compatible with the multiplication in the semigroup. We show that this is true if and only if the semigroup is pseudo-inverse (cf. (8)). We also show how this relation may be used to obtain a simple description of the finest primitive congruence and the finest completely simple congruence on a regular semigroup.


1983 ◽  
Vol 26 (2) ◽  
pp. 213-220 ◽  
Author(s):  
D. B. McAlister ◽  
R. McFadden

We shall denote by ω the natural partial order on the idempotents E = E(S) of a regular semigroup S, so that in E,A partially ordered semigroup S(≦) is called naturally partially ordered [9] if the imposed partial order ≦ extends ω in the sense thatNo assumption is made about the reverse implication.


2014 ◽  
Vol 91 (1) ◽  
pp. 104-115 ◽  
Author(s):  
SUREEPORN CHAOPRAKNOI ◽  
TEERAPHONG PHONGPATTANACHAROEN ◽  
PONGSAN PRAKITSRI

AbstractHiggins [‘The Mitsch order on a semigroup’, Semigroup Forum 49 (1994), 261–266] showed that the natural partial orders on a semigroup and its regular subsemigroups coincide. This is why we are interested in the study of the natural partial order on nonregular semigroups. Of particular interest are the nonregular semigroups of linear transformations with lower bounds on the nullity or the co-rank. In this paper, we determine when they exist, characterise the natural partial order on these nonregular semigroups and consider questions of compatibility, minimality and maximality. In addition, we provide many examples associated with our results.


1973 ◽  
Vol 15 (4) ◽  
pp. 441-460 ◽  
Author(s):  
J. W. Hogan

Let S be a bisimple semigroup, let Es denote the set of idempotents of S, and let ≦ denote the natural partial order relation on Es. Let ≤ * denote the inverse of ≦. The idempotents of S are said to be well-ordered if (Es, ≦ *) is a well-ordered set.


1972 ◽  
Vol 13 (4) ◽  
pp. 451-455 ◽  
Author(s):  
Stephen T. L. Choy

For a semigroup S let I(S) be the set of idempotents in S. A natural partial order of I(S) is defined by e ≦ f if ef = fe = e. An element e in I(S) is called a primitive idempotent if e is a minimal non-zero element of the partially ordered set (I(S), ≦). It is easy to see that an idempotent e in S is primitive if and only if, for any idempotent f in S, f = ef = fe implies f = e or f is the zero element of S. One may also easily verify that an idempotent e is primitive if and only if the only idempotents in eSe are e and the zero element. We let П(S) denote the set of primitive idempotent in S.


Filomat ◽  
2019 ◽  
Vol 33 (7) ◽  
pp. 2051-2060
Author(s):  
Xiangjun Kong ◽  
Pei Wang

Wang (Filomat 29(5), 985-1005, 2015) introduced and investigated quasi-Ehresmann transversals of semi-abundant semigroups satisfy conditions (CR) and (CL) as the generalizations of orthodox transversals of regular semigroups in the semi-abundant case. In this paper, we give two characterizations for a generalized quasi-Ehresmann transversal to be a quasi-Ehresmann transversal. These results further demonstrate that quasi-Ehresmann transversals are the ?real? generalizations of orthodox transversals in the semi-abundant case. Moreover, we obtain the main result that the product of any two quasi-ideal quasi-Ehresmann transversals of a semi-abundant semigroup S which satisfy the certain conditions is a quasi-ideal quasi-Ehresmann transversal of S.


Sign in / Sign up

Export Citation Format

Share Document