ADDING VALUE TO FIELD-BASED AGRONOMIC RESEARCH THROUGH CLIMATE RISK ASSESSMENT: A CASE STUDY OF MAIZE PRODUCTION IN KITALE, KENYA

2011 ◽  
Vol 47 (2) ◽  
pp. 317-338 ◽  
Author(s):  
P. N. DIXIT ◽  
P. J. M. COOPER ◽  
J. DIMES ◽  
K. P. RAO

SUMMARYIn sub-Saharan Africa (SSA), rainfed agriculture is the dominant source of food production. Over the past 50 years much agronomic crop research has been undertaken, and the results of such work are used in formulating recommendations for farmers. However, since rainfall is highly variable across seasons the outcomes of such research will depend upon the rainfall characteristics of the seasons during which the work was undertaken. A major constraint that is faced by such research is the length of time for which studies could be continued, typically ranging between three and five years. This begs the question as to what extent the research was able to ‘sample’ the natural longer-term season-to-season rainfall variability. Without knowledge of the full implications of weather variability on the performance of innovations being recommended, farmers cannot be properly advised about the possible weather-induced risks that they may face over time. To overcome this constraint, crop growth simulation models such as the Agricultural Production Systems Simulator (APSIM) can be used as an integral part of field-based agronomic studies. When driven by long-term daily weather data (30+ years), such models can provide weather-induced risk estimates for a wide range of crop, soil and water management innovations for the major rainfed crops of SSA. Where access to long-term weather data is not possible, weather generators such as MarkSim can be used. This study demonstrates the value of such tools in climate risk analyses and assesses the value of the outputs in the context of a high potential maize production area in Kenya. MarkSim generated weather data is shown to provide a satisfactory approximation of recorded weather data at hand, and the output of 50 years of APSIM simulations demonstrate maize yield responses to plant population, weed control and nitrogen (N) fertilizer use that correspond well with results reported in the literature. Weather-induced risk is shown to have important effects on the rates of return ($ per $ invested) to N-fertilizer use which, across seasons and rates of N-application, ranged from 1.1 to 6.2. Similarly, rates of return to weed control and to planting at contrasting populations were also affected by seasonal variations in weather, but were always so high as to not constitute a risk for small-scale farmers. An analysis investigating the relative importance of temperature, radiation and water availability in contributing to weather-induced risk at different maize growth stages corresponded well with crop physiological studies reported in the literature.

1990 ◽  
Vol 115 (1) ◽  
pp. 23-27 ◽  
Author(s):  
R. O. Clements ◽  
P. J. Murray ◽  
B. R. Bentley ◽  
I. F. Henderson

SUMMARYPlots at Hurley, UK, sown to perennial ryegrass (Lolium perenne) in 1968 were given 188, 376 or 752 kg N fertilizer/ha per year. Half of each plot at the lowest and highest rate of N fertilizer was given a severe pesticide (phorate) treatment at frequent intervals. Plots were cut and their herbage yield was assessed on five occasions during each of the following 20 years. There was no indication of a long-term decline in total annual herbage yield at any rate of N fertilizer use. The severe pesticide regime enhanced yield by an average of 14·6%/year during the first 11 years, but tended to have little effect or to reduce yields subseque7tly. Initially (1969) all treatment plots comprised at least 85% perennial ryegrass, but this proportion declined to between 67% (medium N) and 40% (high N) by 1989. Apart from ryegrass, the main sward components were species of the grasses Agrostis, Poa, and Elymus and traces of the broad-leaved species Stellaria media and Taraxacum officinale.


2012 ◽  
Vol 3 (1) ◽  
pp. 27-39
Author(s):  
H. A. Sonbol ◽  
Z. M. El-Sirafy ◽  
E. A. E. Gazia ◽  
H. A. Shams El-Din ◽  
Sahar H. Rashed

2020 ◽  
Vol 112 (3) ◽  
pp. 2132-2151 ◽  
Author(s):  
Romulo P. Lollato ◽  
Guilherme P. Bavia ◽  
Vinicius Perin ◽  
Mary Knapp ◽  
Eduardo A. Santos ◽  
...  

2020 ◽  
Author(s):  
Peiyu Cao ◽  
Chaoqun Lu ◽  
Jien Zhang ◽  
Avani Khadilkar

Abstract. The increasing demands of food and biofuel have promoted century-long cropland expansion and nitrogen (N) fertilizer enrichment in the United States. However, the role of such long-term human activities in influencing the spatiotemporal patterns of Ammonia (NH3) emission remains poorly understood. Based on an empirical model including climate, soil properties, N fertilizer management, and cropland distribution history, we have quantified monthly fertilizer-induced NH3 emission across the contiguous U.S. from 1900 to 2015. Our results show that N fertilizer-induced NH3 emission in the U.S. has increased from


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 607
Author(s):  
Andreas Meyer-Aurich ◽  
Yusuf Nadi Karatay ◽  
Ausra Nausediene ◽  
Dieter Kirschke

The use of nitrogen (N) fertilizer substantially contributes to greenhouse gas (GHG) emissions due to N2O emissions from agricultural soils and energy-intensive fertilizer manufacturing. Thus, a reduction of mineral N fertilizer use can contribute to reduced GHG emissions. Fertilizer tax is a potential instrument to provide incentives to apply less fertilizer and contribute to the mitigation of GHG emissions. This study provides model results based on a production function analysis from field experiments in Brandenburg and Schleswig-Holstein, with respect to risk aversion by calculating certainty equivalents for different levels of risk aversion. The model results were used to identify effective and cost-efficient options considering farmers’ risk aversion to reduce N fertilizer, and to compare the potential and cost of GHG mitigation with different N fertilizer tax schemes. The results show that moderate N tax levels are effective in reducing N fertilizer levels, and thus, in curbing GHG emissions at costs below 100 €/t CO2eq for rye, barley and canola. However, in wheat production, N tax has limited effects on economically optimal N use due to the effects of N fertilizer on crop quality, which affect the sale prices of wheat. The findings indicate that the level of risk aversion does not have a consistent impact on the reduction of N fertilizer with a tax, even though the level of N fertilizer use is generally lower for risk-averse agents. The differences in N fertilizer response might have an impact on the relative advantage of different crops, which should be taken into account for an effective implementation of a tax on N fertilizer.


2021 ◽  
Author(s):  
Keyu Ren ◽  
Minggang Xu ◽  
Rong Li ◽  
Lei Zheng ◽  
Shaogui Liu ◽  
...  

Abstract Optimal nitrogen (N) management is critical for efficient crop production and agricultural pollution control. However, it is difficult to implement advanced management practices on smallholder farms due to a lack of knowledge and technology. Here, using 35,502 on-farm fertilization experiments, we demonstrated that smallholders in China could produce more grain with less N fertilizer use through optimizing N application rate. The yields of wheat, maize and rice were shown to increase between 10% and 19% while N application rates were reduced by 15–19%. These changes resulted in an increase in N use efficiency (NUE) by 32–46% and a reduction in N surplus by 40% without actually changing farmers’ operational practices. By reducing N application rates in line with official recommendations would not only save fertilizer cost while increasing crop yield, but at the same time reduce environmental N pollution in China. However, making progress towards further optimizing N fertilizer use to produce more grain with less pollution would require managements to improve farmers’ practices which was estimated to cost about 11.8 billion US dollars to implement.


Sign in / Sign up

Export Citation Format

Share Document