TILLAGE AND PLANTING METHODS EFFECTS ON YIELD, WATER USE EFFICIENCY AND PROFITABILITY OF SOYBEAN–WHEAT SYSTEM ON A LOAMY SAND SOIL

2013 ◽  
Vol 49 (4) ◽  
pp. 524-542 ◽  
Author(s):  
HARI RAM ◽  
YADVINDER SINGH ◽  
K. S. SAINI ◽  
D. S. KLER ◽  
J. TIMSINA

SUMMARYContinuous rice–wheat (RW) cropping with intensive tillage has resulted in land degradation and inefficient use of water in Indo-Gangetic Plains (IGP) of South Asia. Replacement of rice with less water requiring crops such as soybean in RW system and identification of effective strategies for tillage management could result in sustainable cropping system in IGP. A field experiment was conducted for five years on an annual soybean–wheat (SW) rotation in the northwest IGP of India to evaluate effect of tillage, raised bed planting and straw mulch on yield, soil properties, water use efficiency (WUE) and profitability. In soybean, straw mulch reduced soil temperature at seeding depth by about 2.5 °C compared with no mulch. Straw mulch also resulted in slightly reduced water use and slightly higher WUE relative to their respective unmulched treatments. During wheat emergence, raised beds resulted in higher soil temperature by 1.6 °C compared with flat treatments. Bulk density and cumulative infiltration were greater in no-tillage compared with conventional tillage. Soil organic carbon in surface layer increased significantly after five years of experimentation. Soybean and wheat yields were similar under different treatments during all the years of experimentation. Soybean and wheat planted on raised beds recorded about 17% and 23% higher WUE, respectively, than in flat layout. The net returns from SW system were greater in no-tillage and permanent raised beds than with conventional tillage. Both no-tillage and permanent raised bed technologies can be adopted for sustainable crop production in SW rotation in northwest IGP. However, more studies are required representing different soil types and climate conditions for making recommendations for other regions of IGP.

2011 ◽  
Vol 48 (1) ◽  
pp. 21-38 ◽  
Author(s):  
HARI RAM ◽  
YADVINDER SINGH ◽  
K. S. SAINI ◽  
D. S. KLER ◽  
J. TIMSINA ◽  
...  

SUMMARYNo-tillage and raised beds are widely used for different crops in developed countries. A field experiment was conducted on an irrigated maize-wheat system to study the effect of field layout, tillage and straw mulch on crop performance, water use efficiency and economics for five years (2003–2008) in northwest India. Straw mulch reduced the maximum soil temperature at seed depth by about 3 °C compared to the no mulch. During the wheat emergence, raised beds recorded 1.3 °C higher soil temperature compared to the flat treatments. Both maize and wheat yields were similar under different treatments during all the years. Maize and wheat planted on raised beds recorded about 7.8% and 22.7% higher water use efficiency than under flat layout, respectively. Straw mulch showed no effect on water use and water use efficiency in maize. The net returns from the maize-wheat system were more in no tillage and permanent raised beds than with conventional tillage. Bulk density and cumulative infiltration were more in no tillage compared with conventional tillage.


2002 ◽  
Vol 38 (2) ◽  
pp. 237-248 ◽  
Author(s):  
R. Mrabet

Wheat (Triticum aestivum) production using no-tillage is becoming an increasingly accepted management technology. Major obstacles to its adoption in Morocco, however, are exportation of wheat straw from the field and stubble grazing. Among pertinent solutions is the control of these practices. A four-year field study was conducted to determine the effect of residue level under no-tillage on wheat grain and total dry-matter yields, water use and water-use efficiency, and to compare this with conventional tillage systems. The aim was to evaluate whether all the straw produced is needed for no-till cropping or whether partial removal of straw from the field is possible without any adverse effect on production. No-tillage and deep tillage with disk plough performed equally well and subsurface tillage with an off-set disk produced the lowest yields. Both bare and full no-tillage covers depressed wheat production. Uo to 30% of straw produced under no-tillage can be removed without jeopardizing wheat crop performance.


Author(s):  
Getachew Amare ◽  
Bizuayehu Desta

AbstractMulches are materials applied in a soil surface for different roles and purposes. Plastic mulches with different colour have been developed and utilized in different crop production systems. Using coloured plastic mulches is mainly focused in modifying the radiation budget and decreasing the soil water loss. Besides, it helps to regulate soil temperature, water use efficiency, plant growth, yield, quality and weed and insect infestation. In this review, the knowledge and possible application of coloured plastic mulches, which can improve the soil physical properties, growth, yield, and quality crops has been reviewed and discussed. The role of coloured plastic mulches to mitigate the harmful effect of environmental stress in crops is also examined. Various physicochemical processes leading to improved crop production under the effect of coloured plastic mulches are also discussed. The combined results indicated that, effect of coloured plastic mulches is highly significant on soil temperature, moisture and water holding capacity. While black and blue plastics increase soil temperature, clear and white decreases it. Higher number of fruits, number of roots, tubers and bulbs was recorded in use of coloured plastic mulches. Similarly, the TSS, Vitamin C and juice percentage of different plants also showed significant improvement. It is also reported that weed infestation and viral diseases is highly reduced. Coloured plastic mulches also have some negative impacts like, decrease growth and yield in some plants, increase pest infestation, microplastics contamination, soil puddling, soil structural loss and reduce activity of soil-microorganisms. Therefore, use of coloured plastic mulches require close inspection of interaction with factors like; cropping season, root zone temperature, crop type, insect pest infestation and water use efficiency factors.


Author(s):  
Alladassi Félix Kouelo ◽  
Mahugnon Socrate Agonvinon ◽  
Julien Avakoudjo ◽  
Tobi Moriaque Akplo ◽  
Pascal Houngnandan ◽  
...  

In agriculture, water has become a limiting factor because of the effects of climate change felt by farmers. This situation seriously compromises agricultural production through pockets of drought, delayed and early cessation of rains and then an increase in the length of the dry season. Aims: This study aims to evaluate the effect of tillage and vegetative mulch on soil physical properties and maize water use efficiency in ferralitic soil of southern Benin. Study Design: The Factorial Complete Randomized Block Design with 4 repetitions was implemented. Place and Duration of Study: The experimental site is located at Allada, in southern Benin, and conducted between May 2017 and July 2017. Methodology: Tillage (No-tillage, flat tillage) and straw mulch rate (0%, 50%, 75% soil cover) and their interaction was been tested during this study. The physical properties of soil and maize water use efficiency were determined. Results: Tillage significantly reduced soil temperature by 2.65% and improved soil permeability by 60%. Tillage also significantly improved water use efficiency for maize grain from 3.88 to 7.88 kg.mm-1.ha-1 and for maize biomass from 12.67to 23.31 kg.mm-1.ha-1. Mulching significantly improved soil moisture from 11.54% to 13.13%, water use efficiency for maize grain from 4.26 to 7.58kg.mm-1.ha-1 and for maize biomass from 14.50 to 22.05 kg.mm-1.ha-1. Mulching also significantly reduced soil temperature by 11%. The combination of tillage and mulching significantly improved water use efficiency for maize grain and biomass production. The highest water use efficiency (8.87 kg.mm-1.ha-1 for maize grain and 25.17 kg.mm-1.ha-1 for maize biomass) was achieved with tillage combined with mulching at 75% soil cover. The interaction between these two factors significantly reduced soil temperature by 11.30% (tillage combined with mulch at 75% soil cover) compared to control (no-tillage and no-mulch). Conclusion: This study showed that tillage and mulching at 50% or 75% soil cover improves soil physical properties and water use efficiency for maize production in the context of climate change.


2021 ◽  
Vol 13 (5) ◽  
pp. 2757
Author(s):  
Abdul Ghaffar Khan ◽  
Muhammad Imran ◽  
Anwar-ul-Hassan Khan ◽  
Ali Fares ◽  
Jiří Šimůnek ◽  
...  

Pakistan is facing severe water shortages, so using the available water efficiently is essential for maximizing crop production. This can be achieved through efficient irrigation practices. Field studies were carried out to determine the dynamics of soil water and the efficiency of water utilization for maize grown under five irrigation techniques (flood-irrigated flatbed, furrow-irrigated ridge, furrow-irrigated raised bed, furrow-irrigated raised bed with plastic mulch, and sprinkler-irrigated flatbed). Spring and summer maize was grown for two years. The Irrigation Management System (IManSys) was used to estimate the irrigation requirements, evapotranspiration, and other water balance components for this study’s different experimental treatments based on site-specific crop, soil, and weather parameters. The results showed that the flood irrigation flatbed (FIF) treatment produced the highest evapotranspiration, leaf area index (LAI), and biomass yield compared to other treatments. However, this treatment did not produce the highest grain yield and had the lowest water use efficiency (WUE) and irrigation water use efficiency (WUEi) compared to the furrow-irrigated raised-bed treatment. The furrow-irrigated raised bed with plastic mulch (FIRBM) treatment improved grain yield, WUE, WUEi, and harvest index compared to the flood irrigation flatbed (FIF) treatment. The results showed a strong correlation between measured and estimated net irrigation requirements and evapotranspiration, with high r2 values (0.93, 0.99, 0.98, and 0.98) for the spring- and summer-sown maize. It was concluded that the FIRBM treatments improved the grain yield, WUE, and WUEi, which ultimately enhanced sustainable crop production. The growing of summer-sown maize in Pakistan has the potential for sustainable maize production under the semiarid and arid climate.


2016 ◽  
Vol 6 (1) ◽  
pp. 822-832
Author(s):  
Halim Mahmud Bhuyan ◽  
Most. Razina Ferdousi ◽  
Mohammad Toufiq Iqbal ◽  
Ahmed Khairul Hasan

Utilization of urea super granule (USG) with raised bed cultivation system for transplanted boro (winter, irrigated) rice production is a major concern now days. A field experiment was conducted in the chuadanga district of Bangladesh to compare the two cultivation methods: deep placement of USG on raised bed with boro rice, and prilled urea (PU) broadcasting in conventional planting. Results showed that USG in raised bed planting increased grain yields of transplanted boro rice by up to 18.18% over PU in conventional planting. Deep placement of USG in raised bed planting increased the number of panicle m-2, number of grains panicle-1 and 1000-grains weight of boro rice than the PU in conventional planting. Better plant growth was observed by deep placement of USG in raised bed planting compared to PU in conventional planting. Sterility percentage and weed infestation were lower on USG in raised bed planting compared to the PU in conventional planting methods. Forty seven percent irrigation water and application time could be saved by USG in raised bed planting than PU in conventional planting. Deep placement of USG in bed saved N fertilizer consumption over conventional planting. Water use efficiency for grain and biomass production was higher with deep placement of USG in bed planting than the PU broadcasting in conventional planting methods. Similarly, agronomic efficiency of N fertilizer by USG in bed planting was significantly higher than the PU broadcasting in conventional planting. This study concluded that deep placement of USG in raised bed planting for transplanted boro rice is a new approach to achieve fertilizer and water use efficiency as well as higher yield and less water input compared to existing agronomic practices in Bangladesh.


2021 ◽  
Vol 39 (3) ◽  
pp. 330-334
Author(s):  
Agnaldo Roberto de J Freitas ◽  
Francisco Claudio L de Freitas ◽  
Caetano Marciano de Souza ◽  
Fabio T Delazari ◽  
Paulo Geraldo Berger ◽  
...  

ABSTRACT Vegetable cultivation requires high water use and weed control. Soil cover using recycled paper, can be an alternative to polyethylene film to reduce weed incidence, soil temperature and increase water use efficiency beyond reduces costs and environmental pollutions. The objective of this study was to evaluate the use of biodegradable mulch in weed management and water use efficiency (WUE) in lettuce crop. The treatments were composed of brown recycled paper (RP), black polyethylene film (PF) and soil without cover with weed removal (WR) and without weed removal (WW). RP and PF were efficient to control weeds. The soil temperature with RP was 8.2 and 2.1ºC lower than with PF and WR, respectively. The lettuce yield with RP was 14.5 and 28.3% higher than WR, and with PF, respectively. The water volume applied with RP was 26.5% lower, and WUE was 55.6% higher compared to WR. Soil cover with recycled paper controlled weeds, reduced soil temperature and water consumption and increased yield and water use efficiency in lettuce crop.


2014 ◽  
Vol 94 (2) ◽  
pp. 223-235 ◽  
Author(s):  
R. Kröbel ◽  
R. Lemke ◽  
C. A. Campbell ◽  
R. Zentner ◽  
B. McConkey ◽  
...  

Kröbel, R., Lemke, R., Campbell, C. A., Zentner, R., McConkey, B., Steppuhn, H., De Jong, R. and Wang, H. 2014. Water use efficiency of spring wheat in the semi-arid Canadian prairies: Effect of legume green manure, type of spring wheat, and cropping frequency. Can. J. Soil Sci. 94: 223–235. In the semi-arid Canadian prairie, water is the main determinant of crop production; thus its efficient use is of major agronomic interest. Previous research in this region has demonstrated that the most meaningful way to measure water use efficiency (WUE) is to use either precipitation use efficiency (PUE) or a modified WUE that accounts for the inefficient use of water in cropping systems that include summer fallow. In this paper, we use these efficiency measures to determine how cropping frequency, inclusion of a legume green manure, and the type of spring wheat [high-yielding Canada Prairie Spring (CPS) vs. Canada Western Red Spring (CWRS)] influence WUE using 25 yr of data (1987–2011) from the “New Rotation” experiment conducted at Swift Current, Saskatchewan. This is a well-fertilized study that uses minimum and no-tillage techniques and snow management to enhance soil water capture. We compare these results to those from a 39-yr “Old Rotation” experiment, also at Swift Current, which uses conventional tillage management. Our results confirmed the positive effect on WUE of cropping intensity, and of CPS wheat compared with CWRS wheat, while demonstrating the negative effect on WUE of a green manure crop in wheat-based rotations in semiarid conditions. Furthermore, we identified a likely advantage of using reduced tillage coupled with water conserving snow management techniques for enhancing the efficiency of water use.


2005 ◽  
Vol 72 (3) ◽  
pp. 209-222 ◽  
Author(s):  
Yilong Huang ◽  
Liding Chen ◽  
Bojie Fu ◽  
Zhilin Huang ◽  
Jie Gong

2014 ◽  
Vol 50 (4) ◽  
pp. 549-572 ◽  
Author(s):  
V. S. RATHORE ◽  
N. S. NATHAWAT ◽  
B. MEEL ◽  
B. M. YADAV ◽  
J. P. SINGH

SUMMARYThe choice of an appropriate cropping system is critical to maintaining or enhancing agricultural sustainability. Yield, profitability and water use efficiency are important factors for determining suitability of cropping systems in hot arid region. In a two-year field experiment (2009/10–2010/11) on loam sandy soils of Bikaner, India, the production potential, profitability and water use efficiency (WUE) of five cropping systems (groundnut–wheat, groundnut–isabgol, groundnut–chickpea, cluster bean–wheat and mung bean–wheat) each at six nutrient application rate (NAR) i.e. 0, 25, 50, 75, 100% recommended dose of N and P (NP) and 100% NP + S were evaluated. The cropping systems varied significantly in terms of productivity, profitability and WUEs. Averaged across nutrient application regimes, groundnut–wheat rotation gave 300–1620 kg ha−1 and 957–3365 kg ha−1 higher grain and biomass yields, respectively, than other cropping systems. The mean annual net returns were highest for the mung bean–wheat system, which returned 32–57% higher net return than other cropping systems. The mung bean–wheat and cluster bean–wheat systems had higher WUE in terms of yields than other cropping systems. The mung bean–wheat system recorded 35–63% higher WUE in monetary terms compared with other systems. Nutrients application improved yields, profit and WUEs of cropping systems. Averaged across years and cropping systems, the application of 100% NP improved grain yields, returns and WUE by 1.7, 3.9 and 1.6 times than no application of nutrients. The results suggest that the profitability and WUEs of crop production in this hot arid environment can be improved, compared with groundnut–wheat cropping, by substituting groundnut by mung bean and nutrients application.


Sign in / Sign up

Export Citation Format

Share Document