scholarly journals Coloured plastic mulches: impact on soil properties and crop productivity

Author(s):  
Getachew Amare ◽  
Bizuayehu Desta

AbstractMulches are materials applied in a soil surface for different roles and purposes. Plastic mulches with different colour have been developed and utilized in different crop production systems. Using coloured plastic mulches is mainly focused in modifying the radiation budget and decreasing the soil water loss. Besides, it helps to regulate soil temperature, water use efficiency, plant growth, yield, quality and weed and insect infestation. In this review, the knowledge and possible application of coloured plastic mulches, which can improve the soil physical properties, growth, yield, and quality crops has been reviewed and discussed. The role of coloured plastic mulches to mitigate the harmful effect of environmental stress in crops is also examined. Various physicochemical processes leading to improved crop production under the effect of coloured plastic mulches are also discussed. The combined results indicated that, effect of coloured plastic mulches is highly significant on soil temperature, moisture and water holding capacity. While black and blue plastics increase soil temperature, clear and white decreases it. Higher number of fruits, number of roots, tubers and bulbs was recorded in use of coloured plastic mulches. Similarly, the TSS, Vitamin C and juice percentage of different plants also showed significant improvement. It is also reported that weed infestation and viral diseases is highly reduced. Coloured plastic mulches also have some negative impacts like, decrease growth and yield in some plants, increase pest infestation, microplastics contamination, soil puddling, soil structural loss and reduce activity of soil-microorganisms. Therefore, use of coloured plastic mulches require close inspection of interaction with factors like; cropping season, root zone temperature, crop type, insect pest infestation and water use efficiency factors.

2008 ◽  
Vol 56 (1) ◽  
pp. 69-74 ◽  
Author(s):  
A. Kumar ◽  
R. Singh ◽  
R. Chhillar

A field experiment conducted on the sandy loam soil in New Delhi during the winter season of 2003–2004 indicated that the application of three irrigations at the branching, flowering and seed formation stages gave the maximum values of growth and yield attributes (plant height and branches plant −1 , umbels plant −1 , umbellets umbel −1 and seeds umbel −1 ) with the highest seed and stover yields, but was at par with omitting one irrigation at the seed formation stage. The data on the growth and yield indicated that, compared to the other stages, omitting irrigation at the flowering strage resulted in the greatest reduction. The growth and yield attributes and the seed and stover yield of coriander significantly responded to fertilization up to 80 kg N ha −1 . The crop evapotranspiration was the highest with the application of three irrigations, but the water use efficiency remained the highest when irrigation was omitted at the seed formation stage. Nitrogen fertilization up to 120 kg and 80 kg N ha −1 increased the water use and water use efficiency, respectively.


2013 ◽  
Vol 49 (4) ◽  
pp. 524-542 ◽  
Author(s):  
HARI RAM ◽  
YADVINDER SINGH ◽  
K. S. SAINI ◽  
D. S. KLER ◽  
J. TIMSINA

SUMMARYContinuous rice–wheat (RW) cropping with intensive tillage has resulted in land degradation and inefficient use of water in Indo-Gangetic Plains (IGP) of South Asia. Replacement of rice with less water requiring crops such as soybean in RW system and identification of effective strategies for tillage management could result in sustainable cropping system in IGP. A field experiment was conducted for five years on an annual soybean–wheat (SW) rotation in the northwest IGP of India to evaluate effect of tillage, raised bed planting and straw mulch on yield, soil properties, water use efficiency (WUE) and profitability. In soybean, straw mulch reduced soil temperature at seeding depth by about 2.5 °C compared with no mulch. Straw mulch also resulted in slightly reduced water use and slightly higher WUE relative to their respective unmulched treatments. During wheat emergence, raised beds resulted in higher soil temperature by 1.6 °C compared with flat treatments. Bulk density and cumulative infiltration were greater in no-tillage compared with conventional tillage. Soil organic carbon in surface layer increased significantly after five years of experimentation. Soybean and wheat yields were similar under different treatments during all the years of experimentation. Soybean and wheat planted on raised beds recorded about 17% and 23% higher WUE, respectively, than in flat layout. The net returns from SW system were greater in no-tillage and permanent raised beds than with conventional tillage. Both no-tillage and permanent raised bed technologies can be adopted for sustainable crop production in SW rotation in northwest IGP. However, more studies are required representing different soil types and climate conditions for making recommendations for other regions of IGP.


Author(s):  
Pascal Tabi Tabot ◽  
Nchufor Christopher Kedju ◽  
Besingi Claudius Nyama ◽  
Achangoh Josaiah Abeche

Aims: The K3237-80 groundnut variety from IRAD Nkolbisson is widely preferred in the Central African sub region for its sizable seeds and high yields, thus its contribution to livelihoods and food security. Apart from yield rating studies, responses to abiotic stress have not been done for this variety. The aim of this research was to investigate the responses of K3237-80 groundnut variety to salinity and water stress in screen house, in order to predict growth and yield performance under predicted conditions of soil salinity and rainfall variability. Materials and Methods: The experimental design was a 4 by 3 factorial design. There were three levels of irrigation corresponding to 1100 mm, 2200 mm and 3300 mm crossed with four salinity levels of 0, 4, 8 and 12 ppt. Treatments were maintained till maturity and growth, yield and physiological parameters measured. Data were subjected to Factorial Analysis of Variance through the GLM approach, in the MINITAB Version 17 statistical package, followed by Spearman Rank Correlation and Factor analyses, all at α = 0.05. Results: It was found that this variety is mildly tolerant to salinity, as growth and yield decreased at salinity levels above 4 ppt. It is however resistant to irrigation water variability which explains why it does well in all five agroecological zones of Cameroon. Both salinity and irrigation treatments significantly influenced WUE, transpiration rate and TUE (p<0.05). Water use efficiency decreased from 3.23 g/l in plants irrigated with freshwater to 1.76 g/l in plants treated with water of 12 ppt salinity. Transpiration rate increased from 0.04 l/hr/plant at 0ppt to 0.06 l/hr/plant at higher salinities, while transpiration use efficiency correspondingly decreased significantly. Correlation analysis revealed that growth, yield and biomass parameters of A. hypogea are highly salinity-driven, while transpiration and water use efficiency are highly irrigation-dependent. Conclusion: Therefore groundnut can be grown to maturity at salinity of up to 12 ppt, the trade-off is reduced growth and yield, caused by disruptions in photosynthesis and water relations.


Author(s):  
Arjun Lal Prajapat ◽  
Rani Saxena ◽  
R. R. Choudhary ◽  
Manoj Kumhar

Background: India has the largest area under wheat cultivation but variability in climate is one of the major environmental threat to agriculture particularly wheat crop. The growth and yield of wheat crop is adversely affected by environmental stresses such as soil moisture deficit, high temperature, low light intensity etc. Among these stresses irrigation water is a scare resource, it’s optimization is fundamental to water resources use. It permits better utilization of all other production factors and thus leads to increased yields per unit area and time. The higher requirement of food to feed the increased population with reduced water availability for crop production forces the irrigation researchers and managers to use water-saving irrigation strategies to improve the water productivity (WP) in recent years. Thus, an assessment of the potential for reducing water needs and increasing production is the need of time. The current study aimed to study of this province in order to manage and control related problems. Method: In this context a field experiment was conducted during Rabi season 2016 and 2017, Soil moisture studies were started right from sowing and continued up to maturity of wheat crop. The soil moisture content under all the treatments of three replications was determined just before irrigation and twenty four hours after irrigation from 0-15, 15-30, 30-45 and 45-60 cm soil depths and calculate consumptive use of water, soil moisture depletion pattern and water use efficiency. Result: Results revealed that the maximum consumptive use (350.01 mm) of water found with irrigation schedule at 1.2 ETc and highest water use efficiency (15.32 kg ha-1 mm-1) obtained with irrigation schedule at 1.0 ETc. Among the different wheat cultivars Raj-4120 registered higher consumptive use (332.57 mm) and Raj- 4238 obtained highest water use efficiency (16.13 kg ha-1 mm-1) while crop sown on 15th November recorded higher consumptive use (333.04 mm) and water use efficiency (15.69 kg ha-1 mm-1). Wheat is a surface feeder with fibrous root system, the maximum amount of moisture was depleted in shallow depth (0-15 cm) than deeper layers of soil.


Author(s):  
Stella Eggels ◽  
Sonja Blankenagel ◽  
Chris-Carolin Schön ◽  
Viktoriya Avramova

Abstract Key message Carbon isotope discrimination is a promising trait for indirect screening for improved water use efficiency of C4 crops. Abstract In the context of a changing climate, drought is one of the major factors limiting plant growth and yield. Hence, breeding efforts are directed toward improving water use efficiency (WUE) as a key factor in climate resilience and sustainability of crop production. As WUE is a complex trait and its evaluation is rather resource consuming, proxy traits, which are easier to screen and reliably reflect variation in WUE, are needed. In C3 crops, a trait established to be indicative for WUE is the carbon isotopic composition (δ13C) of plant material, which reflects the preferential assimilation of the lighter carbon isotope 12C over 13C during photosynthesis. In C4 crops, carbon fixation is more complex and δ13C thus depends on many more factors than in C3 crops. Recent physiological and genetic studies indicate a correlation between δ13C and WUE also in C4 crops, as well as a colocalization of quantitative trait loci for the two traits. Moreover, significant intraspecific variation as well as a medium to high heritability of δ13C has been shown in some of the main C4 crops, such as maize, sorghum and sugarcane, indicating its potential for indirect selection and breeding. Further research on physiological, genetic and environmental components influencing δ13C is needed to support its application in improving WUE and making C4 crops resilient to climate change.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


2015 ◽  
Vol 33 (4) ◽  
pp. 679-687 ◽  
Author(s):  
M.Z. IHSAN ◽  
F.S. EL-NAKHLAWY ◽  
S.M. ISMAIL

ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.


2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


Sign in / Sign up

Export Citation Format

Share Document