scholarly journals The inheritance of drug resistance and compatibility type in Phytophthora drechsleri

1974 ◽  
Vol 23 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Ikram A. Khaki ◽  
D. S. Shaw

SummaryMethods have been developed for the selection of mutants resistant to p-fluorophenylalanine, chloramphenicol and actidione. Resistance to p-fluorophenylalanine and to chloramphenicol was inherited as if determined in each case by a single dominant allele present in diploid somatic nuclei. Inheritance of mating type was anomalous in crosses involving drug-resistant mutants. Presumptive mating-type heterokaryons were generated in a few per cent of sexual progeny from a wild-type cross.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yağmur Demircan Yalçın ◽  
Taylan Berkin Töral ◽  
Sertan Sukas ◽  
Ender Yıldırım ◽  
Özge Zorlu ◽  
...  

AbstractWe report the development of a lab-on-a-chip system, that facilitates coupled dielectrophoretic detection (DEP-D) and impedimetric counting (IM-C), for investigating drug resistance in K562 and CCRF-CEM leukemia cells without (immuno) labeling. Two IM-C units were placed upstream and downstream of the DEP-D unit for enumeration, respectively, before and after the cells were treated in DEP-D unit, where the difference in cell count gave the total number of trapped cells based on their DEP characteristics. Conductivity of the running buffer was matched the conductivity of cytoplasm of wild type K562 and CCRF-CEM cells. Results showed that DEP responses of drug resistant and wild type K562 cells were statistically discriminative (at p = 0.05 level) at 200 mS/m buffer conductivity and at 8.6 MHz working frequency of DEP-D unit. For CCRF-CEM cells, conductivity and frequency values were 160 mS/m and 6.2 MHz, respectively. Our approach enabled discrimination of resistant cells in a group by setting up a threshold provided by the conductivity of running buffer. Subsequent selection of drug resistant cells can be applied to investigate variations in gene expressions and occurrence of mutations related to drug resistance.


2014 ◽  
Vol 58 (10) ◽  
pp. 6024-6031 ◽  
Author(s):  
Brian D. VanScoy ◽  
Rodrigo E. Mendes ◽  
Mariana Castanheira ◽  
Jennifer McCauley ◽  
Sujata M. Bhavnani ◽  
...  

ABSTRACTIt is important to understand the relationship between antibiotic exposure and the selection of drug resistance in the context of therapy exposure. We sought to identify the ceftolozane-tazobactam exposure necessary to prevent the amplification of drug-resistant bacterial subpopulations in a hollow-fiber infection model. TwoPseudomonas aeruginosachallenge isolates were selected for study, a wild-type ATCC strain (ceftolozane-tazobactam MIC, 0.5 mg/liter) and a clinical isolate (ceftolozane-tazobactam MIC, 4 mg/liter). The experiment duration was 10 days, and the ceftolozane-tazobactam dose ratio (2:1) and dosing interval (every 8 h) were selected to approximate those expected to be used clinically. The studied ceftolozane-tazobactam dosing regimens ranged from 62.5/31.25 to 2,000/1,000 mg per dose in step fold dilutions. Negative-control arms included no treatment and tazobactam at 500 mg every 8 h. Positive-control arms included ceftolozane at 1 g every 8 h and piperacillin-tazobactam dosed at 4.5 g every 6 h. For the wild-type ATCC strain, resistance was not selected by any ceftolozane-tazobactam regimen evaluated. For the clinical isolate, an inverted-U-shaped function best described the relationship between the amplification of a drug-resistant subpopulation and drug exposure. The least (62.5/31.25 mg) and most (2,000/1,000 mg) intensive ceftolozane-tazobactam dosing regimens did not select for drug resistance. Drug resistance selection was observed with intermediately intensive dosing regimens (125/62.5 through 1,000/500 mg). For the intermediately intensive ceftolozane-tazobactam dosing regimens, the duration until the selection for drug resistance increased with dose regimen intensity. These data support the selection of ceftolozane-tazobactam dosing regimens that minimize the potential for on-therapy drug resistance selection.


2002 ◽  
Vol 46 (11) ◽  
pp. 3370-3380 ◽  
Author(s):  
Dilek Ince ◽  
Xiamei Zhang ◽  
L. Christine Silver ◽  
David C. Hooper

ABSTRACT We determined the target enzyme interactions of garenoxacin (BMS-284756, T-3811ME), a novel desfluoroquinolone, in Staphylococcus aureus by genetic and biochemical studies. We found garenoxacin to be four- to eightfold more active than ciprofloxacin against wild-type S. aureus. A single topoisomerase IV or gyrase mutation caused only a 2- to 4-fold increase in the MIC of garenoxacin, whereas a combination of mutations in both loci caused a substantial increase (128-fold). Overexpression of the NorA efflux pump had minimal effect on resistance to garenoxacin. With garenoxacin at twice the MIC, selection of resistant mutants (<7.4 × 10−12 to 4.0 × 10−11) was 5 to 6 log units less than that with ciprofloxacin. Mutations inside or outside the quinolone resistance-determining regions (QRDR) of either topoisomerase IV, or gyrase, or both were selected in single-step mutants, suggesting dual targeting of topoisomerase IV and gyrase. Three of the novel mutations were shown by genetic experiments to be responsible for resistance. Studies with purified topoisomerase IV and gyrase from S. aureus also showed that garenoxacin had similar activity against topoisomerase IV and gyrase (50% inhibitory concentration, 1.25 to 2.5 and 1.25 μg/ml, respectively), and although its activity against topoisomerase IV was 2-fold greater than that of ciprofloxacin, its activity against gyrase was 10-fold greater. This study provides the first genetic and biochemical data supporting the dual targeting of topoisomerase IV and gyrase in S. aureus by a quinolone as well as providing genetic proof for the expansion of the QRDRs to include the 5′ terminus of grlB and the 3′ terminus of gyrA.


2013 ◽  
Vol 57 (9) ◽  
pp. 4134-4138 ◽  
Author(s):  
Brian VanScoy ◽  
Rodrigo E. Mendes ◽  
Mariana Castanheira ◽  
Jennifer McCauley ◽  
Sujata M. Bhavnani ◽  
...  

ABSTRACTIn an era of rapidly emerging antimicrobial-resistant bacteria, it is critical to understand the importance of the relationships among drug exposure, duration of therapy, and selection of drug resistance. Herein we describe the results of studies designed to determine the ceftolozane-tazobactam exposure necessary to prevent the amplification of drug-resistant bacterial subpopulations in a hollow-fiber infection model. The challenge isolate was a CTX-M-15-producingEscherichia coliisolate genetically engineered to transcribe a moderate level ofblaCTX-M-15. This organism'sblaCTX-M-15transcription level was confirmed by relative quantitative reverse transcription-PCR (qRT-PCR), β-lactamase hydrolytic assays, and a ceftolozane MIC value of 16 mg/liter. In these studies, the experimental duration (10 days), ceftolozane-tazobactam dose ratio (2:1), and dosing interval (every 8 h) were selected to approximate those expected to be used clinically. The ceftolozane-tazobactam doses studied ranged from 125-62.5 to 1,500-750 mg. Negative- and positive-control arms included no treatment and piperacillin-tazobactam at 4.5 g every 6 h, respectively. An inverted-U-shaped function best described the relationship between bacterial drug resistance amplification and drug exposure. The least- and most-intensive ceftolozane-tazobactam dosing regimens, i.e., 125-62.5, 750-375, 1,000-500, and 1,500-750 mg, did not amplify drug resistance, while drug resistance amplification was observed with intermediate-intensity dosing regimens (250-125 and 500-250 mg). For the intermediate-intensity ceftolozane-tazobactam dosing regimens, the drug-resistant subpopulation became the dominant population by days 4 to 6. The more-intensive ceftolozane-tazobactam dosing regimens (750-375, 1,000-500, and 1,500-750 mg) not only prevented drug resistance amplification but also virtually sterilized the model system. These data support the selection of ceftolozane-tazobactam dosing regimens that minimize the potential for on-therapy drug resistance amplification.


ISRN Oncology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Fei Chu ◽  
Jessica A. Naiditch ◽  
Sandra Clark ◽  
Yi-Yong Qiu ◽  
Xin Zheng ◽  
...  

Resistance to cytotoxic agents has long been known to be a major limitation in the treatment of human cancers. Although many mechanisms of drug resistance have been identified, chemotherapies targeting known mechanisms have failed to lead to effective reversal of drug resistance, suggesting that alternative mechanisms remain undiscovered. Previous work identified midkine (MK) as a novel putative survival molecule responsible for cytoprotective signaling between drug-resistant and drug-sensitive neuroblastoma, osteosarcoma and breast carcinoma cells in vitro. In the present study, we provide further in vitro and in vivo studies supporting the role of MK in neuroblastoma cytoprotection. MK overexpressing wild type neuroblastoma cells exhibit a cytoprotective effect on wild type cells when grown in a co-culture system, similar to that seen with doxorubicin resistant cells. siRNA knockdown of MK expression in doxorubicin resistant neuroblastoma and osteosarcoma cells ameliorates this protective effect. Overexpression of MK in wild type neuroblastoma cells leads to acquired drug resistance to doxorubicin and to the related drug etoposide. Mouse studies injecting various ratios of doxorubicin resistant or MK transfected cells with GFP transfected wild type cells confirm this cytoprotective effect in vivo. These findings provide additional evidence for the existence of intercellular cytoprotective signals mediated by MK which contribute to chemotherapy resistance in neuroblastoma.


2002 ◽  
Vol 13 (2) ◽  
pp. 115-128 ◽  
Author(s):  
Youhoon Chong ◽  
Katyna Borroto-Esoda ◽  
Phillip A Furman ◽  
Raymond F Schinazi ◽  
Chung K Chu

In order to understand molecular mechanism of antiviral drug resistance of HIV-1 reverse transcriptase (RT) as well as potent antiviral activity of 2,6-diaminopurine dioxolane (DAPD) [prodrug of (–)-β-D-dioxolane guanine (DXG)] against drug-resistant RTs, molecular modelling studies of three structurally distinct nucleoside RT inhibitor (NRTI)-triphosphates (TP) [zidovudine (AZT)-TP, lamivudine (3TC)-TP and DXG-TP] complexed with the wild-type (WT) and mutated RT were conducted. The computational analyses indicated that the antiviral activity and the calculated relative binding energy of the RT inhibitor triphosphates can be correlated, and the minimized structures gave information on the molecular mechanism of drug resistance conferred by mutations. The interactions between the NRTI-TP and adjacent amino acid residues (Lys65, Lys70, Arg72, Tyr115 and/or Gln151) played important roles in stabilizing the enzyme—inhibitor complex. Particularly, Arg72 was found to stabilize the dioxolane and oxathiolane sugar moiety through hydrogen bonding, which was responsible for favourable binding affinity of DXG-TP to AZT- as well as 3TC-resistant mutants. The conformational changes in these amino acid residues caused by mutation always affected the changes in the tertiary structures of enzyme-inhibitor complexes through either closing or opening the gap between the fingers and palm domains. The enzyme-inhibitor complexes with good binding affinity showed tight binding modes by closing the gap between the two domains, whereas weak inhibitors gave open and loose complexes.


2007 ◽  
Vol 50 (18) ◽  
pp. 4509-4515 ◽  
Author(s):  
Yuan-Fang Wang ◽  
Yunfeng Tie ◽  
Peter I. Boross ◽  
Jozsef Tozser ◽  
Arun K. Ghosh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document