scholarly journals Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.)

2005 ◽  
Vol 86 (2) ◽  
pp. 97-106 ◽  
Author(s):  
CHUNMING WANG ◽  
CHENGSONG ZHU ◽  
HUQU ZHAI ◽  
JIANMIN WAN

Markers with segregation ratio distortion are commonly observed in data sets used for quantitative trait locus (QTL) mapping. In this study, a multipoint method of maximum likelihood (ML) was newly developed to estimate the positions and effects of the segregation distortion loci (SDLs) in two F2 populations of rice (Oryza sativa L.), i.e. Taichung65/Bhadua (TB; japonica–indica cross) and CPSLO17/W207-2 (CW; japonica–japonica). Of the four parents, W207-2 and Bhadua were found to be spikelet semi-sterile and stably inherited through selfing, and spikelet fertility segregated in the two populations. Therefore, recombination frequencies were recalculated after mapping the SDLs by using the multipoint method, and the molecular linkage maps of the two F2 populations were constructed to detect QTLs underlying spikelet fertility. As a result, five SDLs in the TB population were mapped on chromosomes 1, 3, 8 and 9, respectively. Two major QTLs underlying spikelet fertility, namely qSS-6a and qSS-8a, were detected on chromosomes 6 and 8, respectively. In the CW population, a total of 12 SDLs were detected on all 12 chromosomes except 1, 5, 7 and 11. Three QTLs underlying spikelet sterility, namely qSS-2, qSS-6b and qSS-8b on chromosomes 2, 6 and 8, were determined on the whole genome scale. Interestingly, both qSS-6a and qSS-6b, detected in the two F2 populations respectively, were located on a similar position as the S5 gene on chromosome 6; while qSS-8a and qSS-8b were also simultaneously detected on similar positions of the short arm of chromosome 8 in the two populations, which should be a new sterility gene showing the same type of zygotic selection.

2019 ◽  
Vol 157 (04) ◽  
pp. 283-299 ◽  
Author(s):  
C. Malumpong ◽  
S. Cheabu ◽  
C. Mongkolsiriwatana ◽  
W. Detpittayanan ◽  
A. Vanavichit

AbstractThe reproductive stage of rice is the most sensitive to heat stress, which can lead to spikelet sterility. Thus, heat-tolerant and heat-susceptible genotypes were used to investigate their differences in terms of phenotypic responses and expression changes of Hsf genes at the pre-flowering stage under heat stress. Results clearly showed that panicles had the highest temperature compared with other plant parts under both natural and heated conditions. However, the temperatures of tolerant and susceptible genotypes were not significantly different. In terms of spikelet fertility, the tolerant lines M9962 and M7988 had high seed set because their anther dehiscence, pollen viability and pollen germination were only slightly affected. In contrast, the susceptible line Sinlek showed severe effects at all steps of fertilization, and the pollen viability of M7766 was slightly affected under heat stress but was more affected in terms of anther dehiscence and pollen germination. Both susceptible lines showed dramatically decreased seed set. In addition, the expression of six HsfA genes in the flag leaves and spikelets at the R2 stage of plants under heat stress showed different responses. Notably, expression of the HsfA2a gene was predominantly upregulated in the flag leaf and spikelets under heat stress in M9962. Therefore, it can be concluded that heat stress has severe effects on the stamen, and that different genotypes have different susceptibilities to heat stress.


2003 ◽  
Vol 53 (3) ◽  
pp. 255-262 ◽  
Author(s):  
Sohei Kobayashi ◽  
Yoshimichi Fukuta ◽  
Satoshi Morita ◽  
Tadashi Sato ◽  
Mitsuru Osaki ◽  
...  

Plant Science ◽  
2006 ◽  
Vol 170 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Yanjun Dong ◽  
H. Kamiuten ◽  
Zhongnan Yang ◽  
Dongzhi Lin ◽  
T. Ogawa ◽  
...  

Euphytica ◽  
2012 ◽  
Vol 192 (1) ◽  
pp. 63-75 ◽  
Author(s):  
O. E. Manangkil ◽  
H. T. T. Vu ◽  
N. Mori ◽  
S. Yoshida ◽  
C. Nakamura

10.5109/26153 ◽  
2013 ◽  
Vol 58 (1) ◽  
pp. 1-6
Author(s):  
Nguyet M. T. Nguyen ◽  
Long H. Hoang ◽  
Naruto Furuya ◽  
Kenichi Tsuchiya ◽  
Thuy T. T. Nguyen

2018 ◽  
Vol 131 (3) ◽  
pp. 637-648 ◽  
Author(s):  
Yong Zhou ◽  
Yajun Tao ◽  
Yuan Yuan ◽  
Yanzhou Zhang ◽  
Jun Miao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document