Chromosomal regions associated with segregation distortion of molecular markers in F2 , backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.)

1997 ◽  
Vol 253 (5) ◽  
pp. 535-545 ◽  
Author(s):  
Y. Xu ◽  
L. Zhu ◽  
J. Xiao ◽  
N. Huang ◽  
S. R. McCouch
Author(s):  
Parameswaran Chidambaranathan ◽  
Cayalvizhi Balasubramaniasai ◽  
Niranjana Behura ◽  
Mohini Purty ◽  
Sanghamitra Samantaray ◽  
...  

2019 ◽  
Vol 11 (29) ◽  
pp. 65-84
Author(s):  
Seyedeh Minoo Mirarab Razi ◽  
Reza Shirzadian-Khorramabad ◽  
Hossein Sabouri ◽  
Babak Rabiei ◽  
Hossein Hosseini Moghadam ◽  
...  

2018 ◽  
Vol 6 (3) ◽  
pp. 280-291
Author(s):  
Myint Aye ◽  
◽  
NyoMar Htwe ◽  
KhinMu Aye ◽  
MoeMoeKyi Win ◽  
...  

2012 ◽  
Vol 12 (1) ◽  
pp. 137 ◽  
Author(s):  
Balram Marathi ◽  
Smriti Guleria ◽  
Trilochan Mohapatra ◽  
Rajender Parsad ◽  
Nagarajan Mariappan ◽  
...  

2000 ◽  
Vol 50 (2) ◽  
pp. 65-72 ◽  
Author(s):  
Yoshimichi Fukuta ◽  
Hideki Sasahara ◽  
Katsunori Tamura ◽  
Toshinori Fukuyama

2005 ◽  
Vol 86 (2) ◽  
pp. 97-106 ◽  
Author(s):  
CHUNMING WANG ◽  
CHENGSONG ZHU ◽  
HUQU ZHAI ◽  
JIANMIN WAN

Markers with segregation ratio distortion are commonly observed in data sets used for quantitative trait locus (QTL) mapping. In this study, a multipoint method of maximum likelihood (ML) was newly developed to estimate the positions and effects of the segregation distortion loci (SDLs) in two F2 populations of rice (Oryza sativa L.), i.e. Taichung65/Bhadua (TB; japonica–indica cross) and CPSLO17/W207-2 (CW; japonica–japonica). Of the four parents, W207-2 and Bhadua were found to be spikelet semi-sterile and stably inherited through selfing, and spikelet fertility segregated in the two populations. Therefore, recombination frequencies were recalculated after mapping the SDLs by using the multipoint method, and the molecular linkage maps of the two F2 populations were constructed to detect QTLs underlying spikelet fertility. As a result, five SDLs in the TB population were mapped on chromosomes 1, 3, 8 and 9, respectively. Two major QTLs underlying spikelet fertility, namely qSS-6a and qSS-8a, were detected on chromosomes 6 and 8, respectively. In the CW population, a total of 12 SDLs were detected on all 12 chromosomes except 1, 5, 7 and 11. Three QTLs underlying spikelet sterility, namely qSS-2, qSS-6b and qSS-8b on chromosomes 2, 6 and 8, were determined on the whole genome scale. Interestingly, both qSS-6a and qSS-6b, detected in the two F2 populations respectively, were located on a similar position as the S5 gene on chromosome 6; while qSS-8a and qSS-8b were also simultaneously detected on similar positions of the short arm of chromosome 8 in the two populations, which should be a new sterility gene showing the same type of zygotic selection.


Sign in / Sign up

Export Citation Format

Share Document