Geological and palaeontological information and phylogenetic hypotheses

1988 ◽  
Vol 125 (3) ◽  
pp. 207-227 ◽  
Author(s):  
K. S. W. Campbell ◽  
R. E. Barwick

AbstractA number of workers have accepted the proposition that phylogenetic relations between extant organisms can be determined only by reference to the characters of those organisms. Palaeontological data, it is said, have not been useful for developing or refuting such hypotheses. This view may be tested by reference to the respiratory mechanisms of dipnoans (lungfishes) and amphibians. The structure of the heart, lungs, and circulatory systems has been used by various authors to support the view that these are sister groups. Geological data derived from stratigraphy, palaeoecology, taphonomy, geochemistry and functional morphology of primitive dipnoans is used herein to show that these organisms did not engage in aerial respiration. The first unequivocal evidence that dipnoans had become air breathers is from aestivation burrows in Early Permian rocks of the U.S.A. The Dipnoi must have evolved this capacity at some time between the Early Devonian, when the group became well established, and the Early Permian. Similarities between the respiratory systems of extant dipnoans and amphibians must be the result of convergence, or of the derivation of the Amphibia directly from the Dipnoi. The latter view is not currently accepted by any workers in the field. Thus data from the fossil record are used to demonstrate the invalid use of some neontological data for the development of a phylogenetic hypothesis. Classifications of extant organisms depending on putative shared–derived morphological or physiological characters that cannot be adequately tested for convergence by reference to fossils, must be regarded with due caution.

Zootaxa ◽  
2018 ◽  
Vol 4526 (3) ◽  
pp. 251 ◽  
Author(s):  
VIRGINIA LEÓN-RÈGAGNON ◽  
JANET TOPAN

Lung flukes of the genus Haematoloechus Looss, 1899 are common parasites of anurans worldwide, but the taxonomy of the group has been confusing. In this taxonomic revision, 89 species of Haematoloechus (= Pneumonoeces Looss, 1902, Ostioloides Odening, 1960, Ostiolum Pratt, 1903, Skrjabinoeces Sudarikov, 1950, Neohaematoloechus Odening, 1960, Metahaematoloechus Yamaguti, 1971) are listed. Of these, 70 are considered valid, three are species inquirendae (H. legrandi Mañé–Garzón & Gil, 1959, H. latoricensis Kozák, 1968 & H. vitelloconfluentum (Rai, 1962) Saeed, Al–Barwari & Al-Harmni, 2007), one is a nomen nudum H. sudarikovi Belouss, 1962, 14 are junior synonyms and one belongs to Ostioloides. This publication also describes three new species, H. occidentalis n. sp., H. veracruzanus n. sp. and H. mexicanus n. sp., parasitizing species of Rana Linnaeus in Mexico and redescribes Haematoloechus caballeroi (Skrjabin & Antipin, 1962) Yamaguti, 1971. The phylogenetic hypotheses based on sequences of mitochondrial and ribosomal DNA of Haematoloechus spp. show that genera proposed on the basis of morphological characters are not supported. The host records for species of Haematoloechus, together with the phylogenetic hypothesis of the genus, suggest that this host-parasite association predates the ranid diversification in the Cretaceous. 


Zootaxa ◽  
2016 ◽  
Vol 4200 (2) ◽  
pp. 327 ◽  
Author(s):  
PEDRO S. R. ROMANO

Pelomedusoides is the most diverse clade of side-necked turtles and there is an extensive fossil record (de Broin, 1988; Lapparent de Broin, 2000; Gaffney et al., 2006, 2011) that dates back at least to the Barremian (Lower Cretaceous) (Romano et al., 2014). Its large fossil record evidences a greater diversity in the past, particularly at the end of the Mesozoic, and exhibits a good sampling of species that are represented by skull material (Gaffney et al., 2006, 2011). As a consequence, the most complete and recent phylogenetic hypotheses for this clade (e.g. Romano et al., 2014; Cadena, 2015) are based on matrices comprising a great amount of cranial characters derived largely from Gaffney et al. (2006, 2011). In addition, it is well established that shell characters show a lot of phenotypic plasticity, even in the fossil species (Romano, 2008; Gaffney et al., 2006, 2011). In most cases it consequently is not justified to rely on “diagnostic features” of poorly informative shell-only material for describing a new species. Because of that, most authors remark new morphotypes in the literature when such aberrant specimens are recovered, but do not make any nomenclatural act by proposing a new yet poorly supported species (e.g. Romano et al., 2013; Ferreira & Langer, 2013; Menegazzo et al., 2015). Unfortunately, such a supposedly new bothremydid turtle (Pleurodira: Bothremydidae) from the Early Paleocene of Brazil was recently described based on poorly diagnostic remains (Carvalho et al., 2016; hereafter CGB, for the authors initials) and a correction of this unfounded nomenclatural act is required. In addition I present some comments on shell only material from Brazil in order to guide splitter-taxonomists to stop describing poorly preserved fossil specimens as new species. 


Paleobiology ◽  
1995 ◽  
Vol 21 (2) ◽  
pp. 153-178 ◽  
Author(s):  
Peter J. Wagner

Cladograms predict the order in which fossil taxa appeared and, thus, make predictions about general patterns in the stratigraphic record. Inconsistencies between cladistic predictions and the observed stratigraphic record reflect either inadequate sampling of a clade's species, incomplete estimates of stratigraphic ranges, or homoplasy producing an incorrect phylogenetic hypothesis. A method presented in this paper attempts to separate the effects of homoplasy from the effects of inadequate sampling. Sampling densities of individual species are used to calculate confidence intervals on their stratigraphic ranges. The method uses these confidence intervals to test the order of branching predicted by a cladogram. The Lophospiridae (“Archaeogastropoda”) of the Ordovician provide a useful test group because the clade has a good fossil record and it produced species over a long time. Confidence intervals reject several cladistic hypotheses that postulate improbable “ghost lineages.” Other hypotheses are acceptable only with explicit ancestor-descendant relationships. The accepted cladogram is the shortest one that stratigraphic data cannot reject. The results caution against evaluating phylogenetic hypotheses of fossil taxa without considering both stratigraphic data and the possible presence of ancestral species, as both factors can affect interpretations of a clade's evolutionary dynamics and its patterns of morphologic evolution.


Author(s):  
Lei Wu ◽  
J. Brendan Murphy ◽  
Cecilio Quesada ◽  
Zheng-Xiang Li ◽  
John W.F. Waldron ◽  
...  

The supercontinent Pangea formed by the subduction of the Iapetus and Rheic oceans between Gondwana, Laurentia, and Baltica during mid-to-late Paleozoic times. However, there remains much debate regarding how this amalgamation was achieved. Most paleogeographic models based on paleomagnetic data argue that the juxtaposition of Gondwana and Laurussia (Laurentia-Baltica) was achieved via long-lasting highly oblique convergence in the late Paleozoic. In contrast, many geology-based reconstructions suggest that the collision between the two continents was likely initiated via a Gondwanan promontory comprising the Iberian, Armorican, and Bohemian massifs, and parts of the basement units in the Alpine orogen during the Early Devonian. To help resolve this discrepancy, we present an updated compilation of high-quality paleopoles of mid-to-late Paleozoic ages (spanning Middle Ordovician and Carboniferous times) from Gondwana, Laurentia, and Baltica. These paleopoles were evaluated with the Van der Voo selection criteria, corrected for inclination error where necessary, and were used to revise their apparent polar wander (APW) paths. The revised APW paths were constructed using an innovative approach in which age errors, A95 ovals, and Q-factors of individual paleopoles are taken into account. By combining the resulting APW paths with existing geological data and field relationships in the European Variscides, we provide mid-to-late Paleozoic paleogeographic reconstructions which indicate that the formation of Pangea was likely initiated at 400 Ma via the collision between Laurussia and a ribbon-like Gondwanan promontory that was itself formed by a scissor-like opening of the Paleotethys Ocean, and that the amalgamation culminated in the mostly orthogonal convergence between Gondwana and Laurussia.


2019 ◽  
Vol 100 (5) ◽  
pp. 1564-1582 ◽  
Author(s):  
Robert A Martin ◽  
Richard J Zakrzewski

Abstract We evaluated the fossil record of extinct and extant woodrats, and generated a comprehensive phylogenetic hypothesis of woodrat origins and relationships based on these data. The galushamyinin cricetines are redefined and reclassified as a subtribe of the Neotomini, including Repomys, Miotomodon, Galushamys, Nelsonia, and a new extinct genus with two new species. The geographic distribution of Nelsonia, restricted to montane coniferous forests of western Mexico, suggests that this subtribe was mostly confined to western coniferous ecosystems or similar ecosystems at lower elevation during glacial advances. A second subtribe of the Neotomini includes a new archaic genus and species, Neotoma, Hodomys, and Xenomys. Lindsaymys, a possible neotominin from the late Clarendonian (late Miocene) of California, demonstrates an occlusal morphology consistent with ancestry for the Neotomini, but the presence of a fourth root on M1 is problematic and may preclude the known populations from filling that role. Molars identified as Neotoma sp. from the Hemphillian (latest Miocene or early Pliocene) Rancho el Ocote assemblage of Guanajuato, Mexico, may represent the earliest Xenomys. Extant Neotoma species with a bilobed m3 appear to have originated subsequent to about 2.0 Ma, whereas Hodomys alleni and Xenomys nelsoni likely originated earlier from one or more extinct ancestors with an S-shaped m3.


2003 ◽  
Vol 94 (4) ◽  
pp. 457-473 ◽  
Author(s):  
T. N. Taylor ◽  
S. D. Klavins ◽  
M. Krings ◽  
E. L. Taylor ◽  
H. Kerp ◽  
...  

ABSTRACTThe exquisite preservation of organisms in the Early Devonian Rhynie chert ecosystem has permitted the documentation of the morphology and life history biology of fungi belonging to several major taxonomic groups (e.g., Chytridiomycota, Ascomycota, Glomeromycota). The Rhynie chert also provides the first unequivocal evidence in the fossil record of fungal interactions that can in turn be compared with those in modern ecosystems. These interactions in the Rhynie chert involve both green algae and macroplants, with examples of saprophytism, parasitism, and mutualism, including the earliest mycorrhizal associations and lichen symbiosis known to date in the fossil record. Especially significant are several types of specific host responses to fungal infection that indicate that these plants had already evolved methods of defence similar and perhaps analogous to those of extant plants. This suggests that mechanisms underlying the establishment and sustenance of associations of fungi with land plants were well in place prior to the Early Devonian. In addition, a more complete understanding of the microbial organisms involved in this complex ecosystem can also provide calibration points for phylogenies based on molecular data analysis. The richness of the microbial community in the Rhynie chert holds tremendous potential for documenting additional fungal groups, which permits speculation about further interactions with abiotic and biotic components of the environment.


Paleobiology ◽  
1990 ◽  
Vol 16 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Charles R. Marshall

Observed stratigraphic ranges almost always underestimate true longevities. Strauss and Sadler (1987, 1989) provide a method for calculating confidence intervals on the endpoints of local stratigraphic ranges. Their method can also be applied to composite sections; confidence intervals may be placed on times of origin and extinction for entire species or lineages. Confidence interval sizes depend only on the length of the stratigraphic range and the number of fossil horizons. The technique's most important assumptions are that fossil horizons are distributed randomly and that collecting intensity has been uniform over the stratigraphic range. These assumptions are more difficult to test and less likely to be fulfilled for composite sections than for local sections.Confidence intervals give useful baseline estimates of the incompleteness of the fossil record, even if the underlying assumptions cannot be tested. Confidence intervals, which can be very large, should be calculated when the fossil record is used to assess absolute rates of molecular or morphological evolution, especially for poorly preserved groups. Confidence intervals have other functions: to determine how rich the fossil record has to be before radiometric dating errors become the dominant source of error in estimated times of origin or extinction; to predict future fossil finds; to predict which species with fossil records should be extant; and to assess phylogenetic hypotheses and taxonomic assignments.


Paleobiology ◽  
2006 ◽  
Vol 32 (1) ◽  
pp. 147-165 ◽  
Author(s):  
Kenneth D. Angielczyk ◽  
David L. Fox

1998 ◽  
Vol 11 (4) ◽  
pp. 631 ◽  
Author(s):  
Barbara G. Briggs

The 1996 Commemorative Proteaceae Conference drew attention to the large body of work proceeding on all southern continents, the extensive and informative fossil record, and the wide range of studies in ecology and reproductive biology. DNA sequence data and organogeny are producing major insights at the upper taxonomic levels, new phylogenetic hypotheses and classifications are emerging in respect of the recognition of subfamilies and the relationships and composition of tribes, and there is also evidence from morphology and DNA sequence data that several genera are paraphyletic.


Paleobiology ◽  
1997 ◽  
Vol 23 (3) ◽  
pp. 358-372 ◽  
Author(s):  
Colleen Farmer

Traditional wisdom of the evolution of lungs in fishes is that lungs arose when gill ventilation was hindered by an aquatic habitat that was low in oxygen. This scenario has been buttressed primarily by a proposed correlation between extant air-breathing fishes and hypoxic habitats, as well as by the fact that early vertebrate fossils were found in sediments believed to indicate a semi-arid environment. There are problems with this scenario, yet it retains a dominant influence on how the evolution of aerial respiration is viewed. This paper presents a new hypothesis for lung evolution that is more consistent with the fossil record and physiology of extant animals than the traditional scenario; I propose that lungs evolved to supply the heart with oxygen. The primitive vertebrate heart was spongy in architecture and devoid of coronary support, obtaining oxygen from luminal blood. By supplying oxygen to this tissue, lungs may have been important in ancient fishes for sustaining activity, regardless of environment. Furthermore, this function for lungs may have influenced cardiovascular adaptations of tetrapods because their divided cardiovascular system isolates the right side of the heart from pulmonary oxygen. I propose that three innovations compensate for this isolation: In extant amphibians oxygen-rich blood from cutaneous and buccal respiration enters the right side of the heart; in chelonians and lepidosaurs the intracardiac shunt washes oxygen-rich blood into the right side of the heart; in mammals, birds, and perhaps in crocodilians, support of the heart by coronary vasculature eliminates this problem.


Sign in / Sign up

Export Citation Format

Share Document