LA-ICP-MS U–Pb zircon, columbite-tantalite and40Ar–39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China

2016 ◽  
Vol 155 (3) ◽  
pp. 707-728 ◽  
Author(s):  
QIFENG ZHOU ◽  
KEZHANG QIN ◽  
DONGMEI TANG ◽  
CHUNLONG WANG ◽  
PATRICK ASAMOAH SAKYI

AbstractThe Chinese Altai is renowned for its rich rare-element resources. Nine representative rare-element (REL) pegmatites were dated using LA-ICP-MS and40Ar–39Ar methods. The columbite grains yield a weighted mean206Pb/238U age of 239.6±3.8 Ma for the Dakalasu (Be-Nb-Ta) pegmatite and concordia U–Pb ages of 258.1±3.1 Ma and 262.3±2.5 Ma for the Xiaokalasu (Li-Nb-Ta) pegmatite. The zircons display a weighted mean206Pb/238U age of 198.5±2.5 Ma for the Husite (Be) pegmatite and concordia U–Pb ages of 194.3±1.6 Ma and 248.2±2.2 Ma for the Qunkuer (Be) and Taerlang (barren) pegmatites. The muscovite40Ar–39Ar dating gives plateau ages of 286.4±1.6 Ma, 297.0±2.6 Ma, 265.2±1.5 Ma, 178.8±1.0 Ma, 162.2±0.9 Ma, 237.7±1.3 Ma, 237.4±1.2 Ma and 231.9±1.2 Ma for the Talate (Li-Be-Nb-Ta), Baicheng (Nb-Ta), Kangmunagong (barren), Husite (Be), Qunkuer (Be-Nb-Ta), Xiaokalasu (Li-Nb-Ta), Weizigou (Be) and Taerlang (barren) pegmatites, respectively. These new ages coupled with previous geochronological work suggest that the REL pegmatites in the Chinese Altai formed during early Permain – Late Jurassic time. The REL pegmatites located in the Central Altaishan terrane are younger than those in the Qiongkuer–Abagong terrane, showing a correlation with the coeval and adjacent granites. The formation of the REL pegmatites and these granites indicates frequent and strong magmatic activity in the post-orogenic and anorogenic setting. The spatial and temporal distribution of pegmatites and granites reveals a magmatism path from the SE (of age early–middle Permian), to the NW (middle Permian – Middle Triassic) and finally to the central part (Middle Triassic – Jurassic) of the Chinese Altai.

Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 266
Author(s):  
Krzysztof Szopa ◽  
Anna Sałacińska ◽  
Ashley P. Gumsley ◽  
David Chew ◽  
Petko Petrov ◽  
...  

Southeastern Bulgaria is composed of a variety of rocks from pre-Variscan (ca. 0.3 Ga) to pre-Alpine sensu lato (ca. 0.15 Ga) time. The Sakar Unit in this region comprises a series of granitoids and gneisses formed or metamorphosed during these events. It is cut by a series of post-Variscan hydrothermal veins, yet lacks pervasive Alpine deformation. It thus represents a key unit for detecting potential tectonism associated with the enigmatic Cimmerian Orogenic episode, but limited geochronology has been undertaken on this unit. Here we report age constraints on hydrothermal activity in the Sakar Pluton. The investigated veins contain mainly albite–actinolite–chlorite–apatite–titanite–quartz–tourmaline–epidote and accessory minerals. The most common accessory minerals are rutile and molybdenite. Apatite and titanite from the same vein were dated by U–Pb LA–ICP-MS geochronology. These dates are interpreted as crystallization ages and are 149 ± 7 Ma on apatite and 114 ± 1 Ma on titanite, respectively. These crystallization ages are the first to document two stages of hydrothermal activity during the late Jurassic to early Cretaceous, using U–Pb geochronology, and its association with the Cimmerian orogenesis. The Cimmerian tectono-thermal episode is well-documented further to the east in the Eastern Strandja Massif granitoids. However, these are the first documented ages from the western parts of the Strandja Massif, in the Sakar Unit. These ages also temporally overlap with previously published Ar–Ar and K–Ar cooling ages, and firmly establish that the Cimmerian orogeny in the studied area included both tectonic and hydrothermal activity. Such hydrothermal activity likely accounted for the intense albitization found in the Sakar Unit.


2014 ◽  
Vol 41 (3) ◽  
pp. 207-215 ◽  
Author(s):  
Ali Sepahi ◽  
Hossein Shahbazi ◽  
Wolfgang Siebel ◽  
Ahmad Ranin

Abstract The Sanandaj-Sirjan zone of Iran is a metamorphic belt consisting of rocks which were metamorphosed under different pressure and temperature conditions and intruded by various plutons ranging in composition from gabbro to granite. The majority of these granitoids formed along the ancient active continental margin of the Neo-Tethyan ocean at the southeastern edge of the central Iranian microplate. Geochronological data published in recent years indicate periodic plutonism lasting from Carboniferous through Mesozoic to late-Paleogene times (from ca. 300 to ca. 35 Ma) with climax activity during the mid- and late-Jurassic. The age constraints for plutonic complexes, such as Siah-Kouh, Kolah-Ghazi, Golpayegan (Muteh), Azna, Aligoodarz, Astaneh, Borujerd, Malayer (Samen), Alvand, Almogholagh, Ghorveh, Saqqez, Marivan, Naqadeh and Urumieh, clearly indicate the periodic nature of magmatism. Therefore, the Sanandaj-Sirjan zone preserves the record of magmatic activity of a complete orogenic cycle related to (1) Permocarboniferous(?) rifting of Gondwana and opening of the Neo-Tethyan ocean, (2) subduction of the oceanic crust, (3) continental collision and (4) post-collision/post-orogenic activities. The formation of the Marivan granitoids, northwestern Sanandaj-Sirjan zone, for which we present U-Pb zircon and titanite ages of ca. 38 Ma, can be related to the collisional and post-collisional stages of this orogenic cycle.


Lithos ◽  
2021 ◽  
Vol 386-387 ◽  
pp. 106001
Author(s):  
Miguel Ángel Galliski ◽  
Albrecht von Quadt ◽  
María Florencia Márquez-Zavalía

2009 ◽  
Vol 60 (6) ◽  
pp. 495-504 ◽  
Author(s):  
Ioan Balintoni ◽  
Constantin Balica ◽  
Monica Cliveţi ◽  
Li-Qiu Li ◽  
Horst Hann ◽  
...  

The emplacement age of the Muntele Mare Variscan granite (Apuseni Mountains, Romania)Like the Alps and Western Carpathians, the Apuseni Mountains represent a fragment of the Variscan orogen involved in the Alpine crustal shortenings. Thus the more extensive Alpine tectonic unit in the Apuseni Mountains, the Bihor Autochthonous Unit is overlain by several nappe systems. During the Variscan orogeny, the Bihor Unit was a part of the Someş terrane involved as the upper plate in subduction, continental collision and finally in the orogen collapse and exhumation. The Variscan thermotectonic events were marked in the future Bihor Unit by the large Muntele Mare granitoid intrusion, an S-type anatectic body. Zircon U-Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) dating yielded a weighted mean age of 290.9 ± 3.0 Ma and a concordia age of 291.1 ± 1.1 Ma. U-Pb isotope dilution zircon analyses yielded a lower intercept crystallization age of 296.6 + 5.7/-6.2 Ma. These two ages coincide in the error limits. Thus, the Muntele Mare granitoid pluton is a sign of the last stage in the Variscan history of the Apuseni Mountains. Many zircon grains show inheritance and/or Pb loss, typical for anatectic granitoid, overprinted by later thermotectonic events.


Sign in / Sign up

Export Citation Format

Share Document