scholarly journals Fluid-controlled deformation in blueschist-facies conditions: plastic vs brittle behaviour in a brecciated mylonite (Voltri Massif, Western Alps, Italy)

2017 ◽  
Vol 155 (2) ◽  
pp. 335-355 ◽  
Author(s):  
C. MALATESTA ◽  
L. FEDERICO ◽  
L. CRISPINI ◽  
G. CAPPONI

AbstractA blueschist-facies mylonite crops out between two high-pressure tectono-metamorphic oceanic units of the Ligurian Western Alps (NW Italy). This mylonitic metabasite is made up of alternating layers with different grain size and proportions of blueschist-facies minerals.The mylonitic foliation formed at metamorphic conditions of T = 220–310 °C and P = 6.5–10 kbar. The mylonite shows various superposed structures: (i) intrafoliar and similar folds; (ii) chocolate-tablet foliation boudinage; (iii) veins; (iv) breccia.The occurrence of comparable mineral assemblages along the foliation, in boudin necks, in veins and in breccia cement suggests that the transition from ductile deformation (folds) to brittle deformation (veining and breccia), passing through a brittle–ductile regime (foliation boudinage), occurred gradually, without a substantial change in mineral assemblage and therefore in the overall P–T metamorphic conditions (blueschist-facies).A strong fluid–rock interaction was associated with all the deformative events affecting the rock: the mylonite shows an enrichment in incompatible elements (i.e. As and Sb), suggesting an input of fluids, released by adjacent high-pressure metasedimentary rocks, during ductile deformation. The following fracturing was probably enhanced by brittle instabilities arising from strain and pore-fluid pressure partitioning between adjacent domains, without further external fluid input.Fluids were therefore fixed inside the rock during mylonitization and later released into a dense fracture mesh that allowed them to migrate through the mylonitic horizon close to the plate interface.We finally propose that the fracture mesh might represent the field evidence of past episodic tremors or ‘slow earthquakes’ triggered by high pore-fluid pressure.

2018 ◽  
Vol 482 ◽  
pp. 33-43 ◽  
Author(s):  
Stephan Taetz ◽  
Timm John ◽  
Michael Bröcker ◽  
Carl Spandler ◽  
Andreas Stracke

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kodai Nakagomi ◽  
Toshiko Terakawa ◽  
Satoshi Matsumoto ◽  
Shinichiro Horikawa

An amendment to this paper has been published and can be accessed via the original article.


2019 ◽  
Vol 767 ◽  
pp. 228168 ◽  
Author(s):  
Melodie E French ◽  
Greg Hirth ◽  
Keishi Okazaki

2012 ◽  
Vol 117 (B5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Luca Malagnini ◽  
Francesco Pio Lucente ◽  
Pasquale De Gori ◽  
Aybige Akinci ◽  
Irene Munafo'

Geology ◽  
2018 ◽  
Vol 46 (4) ◽  
pp. 299-302 ◽  
Author(s):  
Jiyao Li ◽  
Donna J. Shillington ◽  
Demian M. Saffer ◽  
Anne Bécel ◽  
Mladen R. Nedimović ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document