Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface

2018 ◽  
Vol 482 ◽  
pp. 33-43 ◽  
Author(s):  
Stephan Taetz ◽  
Timm John ◽  
Michael Bröcker ◽  
Carl Spandler ◽  
Andreas Stracke
2013 ◽  
Vol 459 ◽  
pp. 693-697 ◽  
Author(s):  
Chong Feng ◽  
Hua Cai

Buried mudstones general have undercompacted phenomenon. Undercompacted mudstones have the characteristics that the porosity and pore fluid pressure are abnormal bigger. In order to disclosure the seepage mechanics mechanism of undercompacted mudstones formation, this paper has summed up the seepage mechanics relationship when fluid flows through the mudstone, and has verified the relationships between the key physical quantities with the minimal pressure (pressure that can let the fluid flow in the mudstone) by the experiments in physics. This paper has also analysis the formations process of undercompacted mudstone. The result shows that, the flow regime of fluid in the mudstone is the low speed seepage, and it is not applicable by Darcy equation; the fluid what flow through the thick and heavy compacted mudstone has the big minimal pressure. At the beginning or during the deposit, the rule of fluid flow in the mudstone decides that the fluid inside of the mudstone is more difficult to flow out than the fluid surface of the mudstone, and the inside mudstone becomes undercompacted. Because of the undercompacted mudstone is more important for the exploration of oil and gas, it has theoretic and practical sense to analysis the formations mechanism of the undercompacted mudstone.


2017 ◽  
Vol 155 (2) ◽  
pp. 335-355 ◽  
Author(s):  
C. MALATESTA ◽  
L. FEDERICO ◽  
L. CRISPINI ◽  
G. CAPPONI

AbstractA blueschist-facies mylonite crops out between two high-pressure tectono-metamorphic oceanic units of the Ligurian Western Alps (NW Italy). This mylonitic metabasite is made up of alternating layers with different grain size and proportions of blueschist-facies minerals.The mylonitic foliation formed at metamorphic conditions of T = 220–310 °C and P = 6.5–10 kbar. The mylonite shows various superposed structures: (i) intrafoliar and similar folds; (ii) chocolate-tablet foliation boudinage; (iii) veins; (iv) breccia.The occurrence of comparable mineral assemblages along the foliation, in boudin necks, in veins and in breccia cement suggests that the transition from ductile deformation (folds) to brittle deformation (veining and breccia), passing through a brittle–ductile regime (foliation boudinage), occurred gradually, without a substantial change in mineral assemblage and therefore in the overall P–T metamorphic conditions (blueschist-facies).A strong fluid–rock interaction was associated with all the deformative events affecting the rock: the mylonite shows an enrichment in incompatible elements (i.e. As and Sb), suggesting an input of fluids, released by adjacent high-pressure metasedimentary rocks, during ductile deformation. The following fracturing was probably enhanced by brittle instabilities arising from strain and pore-fluid pressure partitioning between adjacent domains, without further external fluid input.Fluids were therefore fixed inside the rock during mylonitization and later released into a dense fracture mesh that allowed them to migrate through the mylonitic horizon close to the plate interface.We finally propose that the fracture mesh might represent the field evidence of past episodic tremors or ‘slow earthquakes’ triggered by high pore-fluid pressure.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kodai Nakagomi ◽  
Toshiko Terakawa ◽  
Satoshi Matsumoto ◽  
Shinichiro Horikawa

An amendment to this paper has been published and can be accessed via the original article.


2019 ◽  
Vol 767 ◽  
pp. 228168 ◽  
Author(s):  
Melodie E French ◽  
Greg Hirth ◽  
Keishi Okazaki

Sign in / Sign up

Export Citation Format

Share Document