Studies on associative nitrogen fixation by antibiotic-resistant mutants ofAzospirillum brasilensewith genotypes of lentil (Lens culinaris)Rhizobiumstrains in calcareous soil

1985 ◽  
Vol 104 (1) ◽  
pp. 207-215 ◽  
Author(s):  
R. Rai

SummaryNitrosoguanidine-induced mutation frequencies for resistance to streptomycin, spectinomycin, erythromycin and novomycin were studied inAzospirillum brasilense.Lentil inoculated withA. brasilenseand its mutants andRhizobiumstrains produced increased nodule dry weight, nitrogenase activity of nodules and roots and grain yield compared with an uninoculated control.

1985 ◽  
Vol 105 (2) ◽  
pp. 261-270 ◽  
Author(s):  
R. Rai

SUMMARYAzospirillum brasilense was treated with nitrosoguanidine and five antibiotic-resistant mutant strains isolated. Variations in growth, N2-fixation, ultraviolet-dark survival and level of antibiotic resistance were found between the mutant strains. Mutant strains STR 112 and KR 2051 showed maximum nitrogenase activity, glutamine synthetase activity and hydrogenase activity (H2uptake) at 32 °C and 40 °C respectively. Inoculation of cheena genotypes withA. brasilenseand its mutants led to significant increase in associative nitrogen fixation, dry weight of roots and grain yield compared with the uninoculated control, with significant strains × genotypes interactions in calcareous soil. It was also noted that under laboratory conditionsAzospirilluminoculation may have produced its response by hormonal means and/or associative N2-fixation.


1988 ◽  
Vol 110 (2) ◽  
pp. 321-329 ◽  
Author(s):  
R. Rai

SummaryHigh-temperature-adapted strains RAU 1, RAU 2 and RAU 3 ofAzospirillum brasilenseC 7 were isolated from stepwise transfer to higher temperature (30 to 42 °C). One of the strains (RAU 1) showed more growth, greater nitrogenase and hydrogenase activities at 30 and 42 °C than parental and other temperature-adapted strains. This strain also showed growth and more nitrogenase activity from pH 6·5 to 8·0. Strain RAU 1 showed cross-resistance to penicillin (300/µg/ml) but not to streptomycin, kanamycin, viomycin and polymixin B at 30 and 42 °C. It was demonstrated in field plots in calcareous soil that seed inoculation with RAU 1 enhanced mineral uptake of cheena. Inoculation with RAU 1 led to a significant increase in associative nitrogen fixation, dry weight of roots, grain and straw yield of cheena compared with the uninoculated control with or without applied N, but the effect of seed inoculation with high-temperature-adapted strains was variable with different genotypes of cheena.


1984 ◽  
Vol 102 (3) ◽  
pp. 521-529 ◽  
Author(s):  
R. Rai ◽  
V. Prasad ◽  
I. C. Shukla

SummaryAzospirillum brasilensewas treated with nitrosoguanidine and five drug-resistant mutant strains isolated. The effects of acriflavin on pre- and post-irradiation with u.v. light and the level of antibiotic resistance were studied. Variations in factors were found between the strains. Inoculation of finger millet withA. brasilenseand mutant strains led to significant increases in grain yield and nitrogenase activity compared with the uninoculated control, with significant strain x genotype interactions. Differential response of genotype and strain was noted on the protein and amino acid concentration of seeds.


1983 ◽  
Vol 101 (2) ◽  
pp. 377-381 ◽  
Author(s):  
R. Rai ◽  
V. Prasad

SUMMARYRhizobium strains adapted to high temperature, and genotypes of green gram, were used to study the symbiotic N2-fixation in a summer season at two moisture levels in calcareous soil. Different interactions between strains and genotypes were observedatthe two moisture levels. At both moisture levels, strain S4 with the green gram genotype S8 showed the greatest grain yield, nitrogenase activity, leghaemoglobin and ethanolsoluble carbohydrate of nodules.


1998 ◽  
Vol 44 (8) ◽  
pp. 753-758 ◽  
Author(s):  
Martha E Ramirez ◽  
Daniel W Israel ◽  
Arthur G Wollum II

Spontaneous mutants (3/parental strain) of soybean bradyrhizobia resistant to streptomycin and erythromycin were selected from strains isolated from bradyrhizobial populations indigenous to Cape Fear and Dothan soils. These were used to evaluate (i) the validity of using antibiotic-resistant mutants to make inferences about the competitiveness of parental strains in soil environments and (ii) the recovery of strains in nodules after inoculation of soybeans grown in soils with indigenous bradyrhizobial populations. Streptomycin and erythromycin resistances of all mutants were stable after approximately 27 generations of growth in yeast extract - mannitol medium, but 33% of the mutants lost resistance to erythromycin upon passage through nodules. Only 17% of the mutants were as competitive as their parental strain when inoculated in a ratio near 1:1 in vermiculite. Four of 10 mutants, which differed in competitiveness from their parental strain in vermiculite, had competitiveness against the soil populations equal to that of their parental strain. Therefore, assessment of competitiveness of mutants and parental strains in non-soil media may not accurately reflect their competitiveness in soil systems. For both the Cape Fear and Dothan soils, recovery of a given mutant from nodules of field-grown plants was always lower than from nodules of plants grown in the greenhouse. Inoculation of the entire rooting zone in the greenhouse experiment and of only a portion of the rooting zone in the field experiments may account for this difference in recovery. Techniques that increase the volume of soil inoculated may enhance nodulation by inoculant strains.Key words: Bradyrizobium, antibiotic resistance, competition.


2019 ◽  
Vol 12 (592) ◽  
pp. eaax3938 ◽  
Author(s):  
Mauricio H. Pontes ◽  
Eduardo A. Groisman

Bacteria can withstand killing by bactericidal antibiotics through phenotypic changes mediated by their preexisting genetic repertoire. These changes can be exhibited transiently by a large fraction of the bacterial population, giving rise to tolerance, or displayed by a small subpopulation, giving rise to persistence. Apart from undermining the use of antibiotics, tolerant and persistent bacteria foster the emergence of antibiotic-resistant mutants. Persister formation has been attributed to alterations in the abundance of particular proteins, metabolites, and signaling molecules, including toxin-antitoxin modules, adenosine triphosphate, and guanosine (penta) tetraphosphate, respectively. Here, we report that persistent bacteria form as a result of slow growth alone, despite opposite changes in the abundance of such proteins, metabolites, and signaling molecules. Our findings argue that transitory disturbances to core activities, which are often linked to cell growth, promote a persister state regardless of the underlying physiological process responsible for the change in growth.


1986 ◽  
Vol 32 (2) ◽  
pp. 183-186 ◽  
Author(s):  
Thomas J. McLoughlin ◽  
Scott G. Alt ◽  
P. Ann Owens ◽  
Corrine Fetherston

Nodulation of Glycine max (L) Merr. by six Rhizobium fredii strains was measured in two Midwestern fields containing high indigenous populations of Bradyrhizobium japonicum (3 × 105/gm soil). The soils were inoculated with antibiotic-resistant mutants using liquid inoculum at two levels on soybean cv. Peking and cv. Jacques 130. Strain establishment was measured 40 days after planting. In the first year, USDA206, USDA217, and USDA257 were the most competitive strains, occupying greater than 50% of the nodules on cv. Peking in both soils. None of the strains were competitive on Jacques 130. In the second growing season, all nodules were formed by the indigenous population on both cultivars, suggesting that these fast-growing strains do not persist in Midwestern soils.


Sign in / Sign up

Export Citation Format

Share Document