scholarly journals Random subgraph counts and U-statistics: multivariate normal approximation via exchangeable pairs and embedding

2010 ◽  
Vol 47 (02) ◽  
pp. 378-393
Author(s):  
Gesine Reinert ◽  
Adrian Röllin

In Reinert and Röllin (2009) a new approach - called the ‘embedding method’ - was introduced, which allows us to make use of exchangeable pairs for normal and multivariate normal approximations with Stein's method in cases where the corresponding couplings do not satisfy a certain linearity condition. The key idea is to embed the problem into a higher-dimensional space in such a way that the linearity condition is then satisfied. Here we apply the embedding to U-statistics as well as to subgraph counts in random graphs.

2010 ◽  
Vol 47 (2) ◽  
pp. 378-393 ◽  
Author(s):  
Gesine Reinert ◽  
Adrian Röllin

In Reinert and Röllin (2009) a new approach - called the ‘embedding method’ - was introduced, which allows us to make use of exchangeable pairs for normal and multivariate normal approximations with Stein's method in cases where the corresponding couplings do not satisfy a certain linearity condition. The key idea is to embed the problem into a higher-dimensional space in such a way that the linearity condition is then satisfied. Here we apply the embedding to U-statistics as well as to subgraph counts in random graphs.


1996 ◽  
Vol 33 (01) ◽  
pp. 1-17 ◽  
Author(s):  
Larry Goldstein ◽  
Yosef Rinott

Stein's method is used to obtain two theorems on multivariate normal approximation. Our main theorem, Theorem 1.2, provides a bound on the distance to normality for any non-negative random vector. Theorem 1.2 requires multivariate size bias coupling, which we discuss in studying the approximation of distributions of sums of dependent random vectors. In the univariate case, we briefly illustrate this approach for certain sums of nonlinear functions of multivariate normal variables. As a second illustration, we show that the multivariate distribution counting the number of vertices with given degrees in certain random graphs is asymptotically multivariate normal and obtain a bound on the rate of convergence. Both examples demonstrate that this approach may be suitable for situations involving non-local dependence. We also present Theorem 1.4 for sums of vectors having a local type of dependence. We apply this theorem to obtain a multivariate normal approximation for the distribution of the random p-vector, which counts the number of edges in a fixed graph both of whose vertices have the same given color when each vertex is colored by one of p colors independently. All normal approximation results presented here do not require an ordering of the summands related to the dependence structure. This is in contrast to hypotheses of classical central limit theorems and examples, which involve for example, martingale, Markov chain or various mixing assumptions.


1996 ◽  
Vol 33 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Larry Goldstein ◽  
Yosef Rinott

Stein's method is used to obtain two theorems on multivariate normal approximation. Our main theorem, Theorem 1.2, provides a bound on the distance to normality for any non-negative random vector. Theorem 1.2 requires multivariate size bias coupling, which we discuss in studying the approximation of distributions of sums of dependent random vectors. In the univariate case, we briefly illustrate this approach for certain sums of nonlinear functions of multivariate normal variables. As a second illustration, we show that the multivariate distribution counting the number of vertices with given degrees in certain random graphs is asymptotically multivariate normal and obtain a bound on the rate of convergence. Both examples demonstrate that this approach may be suitable for situations involving non-local dependence. We also present Theorem 1.4 for sums of vectors having a local type of dependence. We apply this theorem to obtain a multivariate normal approximation for the distribution of the random p-vector, which counts the number of edges in a fixed graph both of whose vertices have the same given color when each vertex is colored by one of p colors independently. All normal approximation results presented here do not require an ordering of the summands related to the dependence structure. This is in contrast to hypotheses of classical central limit theorems and examples, which involve for example, martingale, Markov chain or various mixing assumptions.


Author(s):  
Nicholas Mee

Celestial Tapestry places mathematics within a vibrant cultural and historical context, highlighting links to the visual arts and design, and broader areas of artistic creativity. Threads are woven together telling of surprising influences that have passed between the arts and mathematics. The story involves many intriguing characters: Gaston Julia, who laid the foundations for fractals and computer art while recovering in hospital after suffering serious injury in the First World War; Charles Howard, Hinton who was imprisoned for bigamy but whose books had a huge influence on twentieth-century art; Michael Scott, the Scottish necromancer who was the dedicatee of Fibonacci’s Book of Calculation, the most important medieval book of mathematics; Richard of Wallingford, the pioneer clockmaker who suffered from leprosy and who never recovered from a lightning strike on his bedchamber; Alicia Stott Boole, the Victorian housewife who amazed mathematicians with her intuition for higher-dimensional space. The book includes more than 200 colour illustrations, puzzles to engage the reader, and many remarkable tales: the secret message in Hans Holbein’s The Ambassadors; the link between Viking runes, a Milanese banking dynasty, and modern sculpture; the connection between astrology, religion, and the Apocalypse; binary numbers and the I Ching. It also explains topics on the school mathematics curriculum: algorithms; arithmetic progressions; combinations and permutations; number sequences; the axiomatic method; geometrical proof; tessellations and polyhedra, as well as many essential topics for arts and humanities students: single-point perspective; fractals; computer art; the golden section; the higher-dimensional inspiration behind modern art.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1-C1 ◽  
Author(s):  
Ted Janssen ◽  
Aloysio Janner

2014 is the International Year of Crystallography. During at least fifty years after the discovery of diffraction of X-rays by crystals, it was believed that crystals have lattice periodicity, and crystals were defined by this property. Now it has become clear that there is a large class of compounds with interesting properties that should be called crystals as well, but are not lattice periodic. A method has been developed to describe and analyze these aperiodic crystals, using a higher-dimensional space. In this lecture the discovery of aperiodic crystals and the development of the formalism of the so-called superspace will be described. There are several classes of such materials. After the incommensurate modulated phases, incommensurate magnetic crystals, incommensurate composites and quasicrystals were discovered. They could all be studied using the same technique. Their main properties of these classes and the ways to characterize them will be discussed. The new family of aperiodic crystals has led also to new physical properties, to new techniques in crystallography and to interesting mathematical questions. Much has been done in the last fifty years by hundreds of crystallographers, crystal growers, physicists, chemists, mineralogists and mathematicians. Many new insights have been obtained. But there are still many questions, also of fundamental nature, to be answered. We end with a discussion of these open questions.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550036
Author(s):  
Aurel Bejancu ◽  
Constantin Călin

Using the new approach on higher-dimensional Kaluza–Klein theories developed by the first author, we obtain the 4D Einstein equations on a (4 + n)D relativistic gauge Kaluza–Klein space. Adapted frame and coframe fields, adapted tensor fields, and the Riemannian adapted connection, have a fundamental role in the study. The high level of generality of the study, enables us to recover several results from earlier papers on this matter.


Author(s):  
Austin M. Freeman

Angels probably have bodies. There is no good evidence (biblical, philosophical, or historical) to argue against their bodiliness; there is an abundance of evidence (biblical, philosophical, historical) that makes the case for angelic bodies. After surveying biblical texts alleged to demonstrate angelic incorporeality, the discussion moves to examine patristic, medieval, and some modern figures on the subject. In short, before the High Medieval period belief in angelic bodies was the norm, and afterwards it is the exception. A brief foray into modern physics and higher spatial dimensions (termed “hyperspace”), coupled with an analogical use of Edwin Abbott’s Flatland, serves to explain the way in which appealing to higher-dimensional angelic bodies matches the record of angelic activity in the Bible remarkably well. This position also cuts through a historical equivocation on the question of angelic embodiment. Angels do have bodies, but they are bodies very unlike our own. They do not have bodies in any three-dimensional space we can observe, but are nevertheless embodied beings.


Sign in / Sign up

Export Citation Format

Share Document