Queues with moving average service times

1967 ◽  
Vol 4 (03) ◽  
pp. 553-570 ◽  
Author(s):  
C. Pearce

A model for the service time structure in the single server queue is given embodying correlations between contiguous and near-contiguous service times. A number of results are derived in the case of Poisson arrivals both for equilibrium and the transient state. In particular, Kendall's (equilibrium) result P (a departure leaves the queue empty) = 1 — (mean service time)/(mean inter-arrival time) is found still to hold good. The effect of the correlation on the mean and variance of the equilibrium queue length distribution is examined in a simple case.


1967 ◽  
Vol 4 (3) ◽  
pp. 553-570 ◽  
Author(s):  
C. Pearce

A model for the service time structure in the single server queue is given embodying correlations between contiguous and near-contiguous service times. A number of results are derived in the case of Poisson arrivals both for equilibrium and the transient state. In particular, Kendall's (equilibrium) result P (a departure leaves the queue empty) = 1 — (mean service time)/(mean inter-arrival time) is found still to hold good. The effect of the correlation on the mean and variance of the equilibrium queue length distribution is examined in a simple case.



1979 ◽  
Vol 11 (3) ◽  
pp. 644-659 ◽  
Author(s):  
O. J. Boxma

This paper is devoted to the practical implications of the theoretical results obtained in Part I [1] for queueing systems consisting of two single-server queues in series in which the service times of an arbitrary customer at both queues are identical. For this purpose some tables and graphs are included. A comparison is made—mainly by numerical and asymptotic techniques—between the following two phenomena: (i) the queueing behaviour at the second counter of the two-stage tandem queue and (ii) the queueing behaviour at a single-server queue with the same offered (Poisson) traffic as the first counter and the same service-time distribution as the second counter. This comparison makes it possible to assess the influence of the first counter on the queueing behaviour at the second counter. In particular we note that placing the first counter in front of the second counter in heavy traffic significantly reduces both the mean and variance of the total time spent in the second system.



1979 ◽  
Vol 11 (03) ◽  
pp. 644-659 ◽  
Author(s):  
O. J. Boxma

This paper is devoted to the practical implications of the theoretical results obtained in Part I [1] for queueing systems consisting of two single-server queues in series in which the service times of an arbitrary customer at both queues are identical. For this purpose some tables and graphs are included. A comparison is made—mainly by numerical and asymptotic techniques—between the following two phenomena: (i) the queueing behaviour at the second counter of the two-stage tandem queue and (ii) the queueing behaviour at a single-server queue with the same offered (Poisson) traffic as the first counter and the same service-time distribution as the second counter. This comparison makes it possible to assess the influence of the first counter on the queueing behaviour at the second counter. In particular we note that placing the first counter in front of the second counter in heavy traffic significantly reduces both the mean and variance of the total time spent in the second system.



2018 ◽  
Vol 37 (2) ◽  
pp. 257-289 ◽  
Author(s):  
Onno Boxma ◽  
Mayank Saxena ◽  
Stella Kapodistria ◽  
Rudesindo Núñez Queija

 TWO QUEUES WITH RANDOM TIME-LIMITED POLLINGIn this paper, we analyse a single server polling model withtwo queues. Customers arrive at the two queues according to two independent Poisson processes. There is a single server that serves both queues withgenerally distributed service times. The server spends an exponentially distributed amount of time in each queue. After the completion of this residing time, the server instantaneously switches to the other queue, i.e., there is noswitch-over time. For this polling model we derive the steady-state marginal workload distribution, as well as heavy traffic and heavy tail asymptotic results. Furthermore, we also calculate the joint queue length distribution for the special case of exponentially distributed service times using singular perturbation analysis.



2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Guan Zheng ◽  
Yang Zhijun ◽  
Qian Wenhua ◽  
He Min

Based on priority differentiation and efficiency of the system, we consider anN+1queues’ single-server two-level polling system which consists of one key queue andNnormal queues. The novel contribution of the present paper is that we consider that the server just polls active queues with customers waiting in the queue. Furthermore, key queue is served with exhaustive service and normal queues are served with 1-limited service in a parallel scheduling. For this model, we derive an expression for the probability generating function of the joint queue length distribution at polling epochs. Based on these results, we derive the explicit closed-form expressions for the mean waiting time. Numerical examples demonstrate that theoretical and simulation results are identical and the new system is efficient both at key queue and normal queues.



2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Siew Khew Koh ◽  
Ah Hin Pooi ◽  
Yi Fei Tan

Consider the single server queue in which the system capacity is infinite and the customers are served on a first come, first served basis. Suppose the probability density functionf(t)and the cumulative distribution functionF(t)of the interarrival time are such that the ratef(t)/1-F(t)tends to a constant ast→∞, and the rate computed from the distribution of the service time tends to another constant. When the queue is in a stationary state, we derive a set of equations for the probabilities of the queue length and the states of the arrival and service processes. Solving the equations, we obtain approximate results for the stationary probabilities which can be used to obtain the stationary queue length distribution and waiting time distribution of a customer who arrives when the queue is in the stationary state.



2017 ◽  
Vol 31 (2) ◽  
pp. 139-179 ◽  
Author(s):  
Ioannis Dimitriou

We consider a single server system accepting two types of retrial customers, which arrive according to two independent Poisson streams. The service station can handle at most one customer, and in case of blocking, typeicustomer,i=1, 2, is routed to a separate typeiorbit queue of infinite capacity. Customers from the orbits try to access the server according to the constant retrial policy. We consider coupled orbit queues, and thus, when both orbit queues are non-empty, the orbit queueitries to re-dispatch a blocked customer of typeito the main service station after an exponentially distributed time with rate μi. If an orbit queue empties, the other orbit queue changes its re-dispatch rate from μito$\mu_{i}^{\ast}$. We consider both exponential and arbitrary distributed service requirements, and show that the probability generating function of the joint stationary orbit queue length distribution can be determined using the theory of Riemann (–Hilbert) boundary value problems. For exponential service requirements, we also investigate the exact tail asymptotic behavior of the stationary joint probability distribution of the two orbits with either an idle or a busy server by using the kernel method. Performance metrics are obtained, computational issues are discussed and a simple numerical example is presented.



2008 ◽  
Vol 40 (2) ◽  
pp. 548-577 ◽  
Author(s):  
David Gamarnik ◽  
Petar Momčilović

We consider a multiserver queue in the Halfin-Whitt regime: as the number of serversngrows without a bound, the utilization approaches 1 from below at the rateAssuming that the service time distribution is lattice valued with a finite support, we characterize the limiting scaled stationary queue length distribution in terms of the stationary distribution of an explicitly constructed Markov chain. Furthermore, we obtain an explicit expression for the critical exponent for the moment generating function of a limiting stationary queue length. This exponent has a compact representation in terms of three parameters: the amount of spare capacity and the coefficients of variation of interarrival and service times. Interestingly, it matches an analogous exponent corresponding to a single-server queue in the conventional heavy-traffic regime.



1992 ◽  
Vol 29 (4) ◽  
pp. 967-978 ◽  
Author(s):  
Rhonda Righter ◽  
J. George Shanthikumar

We show that using the FIFO service discipline at single server stations with ILR (increasing likelihood ratio) service time distributions in networks of monotone queues results in stochastically earlier departures throughout the network. The converse is true at stations with DLR (decreasing likelihood ratio) service time distributions. We use these results to establish the validity of the following comparisons:(i) The throughput of a closed network of FIFO single-server queues will be larger (smaller) when the service times are ILR (DLR) rather than exponential with the same means.(ii) The total stationary number of customers in an open network of FIFO single-server queues with Poisson external arrivals will be stochastically smaller (larger) when the service times are ILR (DLR) rather than exponential with the same means.We also give a surprising counterexample to show that although FIFO stochastically maximizes the number of departures by any time t from an isolated single-server queue with IHR (increasing hazard rate, which is weaker than ILR) service times, this is no longer true for networks of more than one queue. Thus the ILR assumption cannot be relaxed to IHR.Finally, we consider multiclass networks of exponential single-server queues, where the class of a customer at a particular station determines its service rate at that station, and show that serving the customer with the highest service rate (which is SEPT — shortest expected processing time first) results in stochastically earlier departures throughout the network, among all preemptive work-conserving policies. We also show that a cµ rule stochastically maximizes the number of non-defective service completions by any time t when there are random, agreeable, yields.



1990 ◽  
Vol 27 (02) ◽  
pp. 401-408
Author(s):  
Nico M. Van Dijk ◽  
Eric Smeitink

We study a queueing system with a finite number of input sources. Jobs are individually generated by a source but wait to be served in batches, during which the input of that source is stopped. The service speed of a server depends on the mode of other sources and thus includes interdependencies. The input and service times are allowed to be generally distributed. A classical example is a machine repair system where the machines are subject to shocks causing cumulative damage. A product-form expression is obtained for the steady state joint queue length distribution and shown to be insensitive (i.e. to depend on only mean input and service times). The result is of both practical and theoretical interest as an extension of more standard batch service systems.



Sign in / Sign up

Export Citation Format

Share Document