A boundary-crossing result for Brownian motion

1992 ◽  
Vol 29 (02) ◽  
pp. 448-453 ◽  
Author(s):  
Thomas H. Scheike

In this paper we obtain a new crossing result for Brownian motion. The boundary studied is a piecewise linear function consisting of two lines. The expression obtained for the boundary crossing probability is of a simple directly computable form.

1992 ◽  
Vol 29 (2) ◽  
pp. 448-453 ◽  
Author(s):  
Thomas H. Scheike

In this paper we obtain a new crossing result for Brownian motion. The boundary studied is a piecewise linear function consisting of two lines. The expression obtained for the boundary crossing probability is of a simple directly computable form.


1997 ◽  
Vol 34 (1) ◽  
pp. 54-65 ◽  
Author(s):  
Liqun Wang ◽  
Klaus Pötzelberger

An explicit formula for the probability that a Brownian motion crosses a piecewise linear boundary in a finite time interval is derived. This formula is used to obtain approximations to the crossing probabilities for general boundaries which are the uniform limits of piecewise linear functions. The rules for assessing the accuracies of the approximations are given. The calculations of the crossing probabilities are easily carried out through Monte Carlo methods. Some numerical examples are provided.


1997 ◽  
Vol 34 (01) ◽  
pp. 54-65 ◽  
Author(s):  
Liqun Wang ◽  
Klaus Pötzelberger

An explicit formula for the probability that a Brownian motion crosses a piecewise linear boundary in a finite time interval is derived. This formula is used to obtain approximations to the crossing probabilities for general boundaries which are the uniform limits of piecewise linear functions. The rules for assessing the accuracies of the approximations are given. The calculations of the crossing probabilities are easily carried out through Monte Carlo methods. Some numerical examples are provided.


2001 ◽  
Vol 38 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Klaus Pötzelberger ◽  
Liqun Wang

Wang and Pötzelberger (1997) derived an explicit formula for the probability that a Brownian motion crosses a one-sided piecewise linear boundary and used this formula to approximate the boundary crossing probability for general nonlinear boundaries. The present paper gives a sharper asymptotic upper bound of the approximation error for the formula, and generalizes the results to two-sided boundaries. Numerical computations are easily carried out using the Monte Carlo simulation method. A rule is proposed for choosing optimal nodes for the approximating piecewise linear boundaries, so that the corresponding approximation errors of boundary crossing probabilities converge to zero at a rate of O(1/n2).


2001 ◽  
Vol 38 (01) ◽  
pp. 152-164 ◽  
Author(s):  
Klaus Pötzelberger ◽  
Liqun Wang

Wang and Pötzelberger (1997) derived an explicit formula for the probability that a Brownian motion crosses a one-sided piecewise linear boundary and used this formula to approximate the boundary crossing probability for general nonlinear boundaries. The present paper gives a sharper asymptotic upper bound of the approximation error for the formula, and generalizes the results to two-sided boundaries. Numerical computations are easily carried out using the Monte Carlo simulation method. A rule is proposed for choosing optimal nodes for the approximating piecewise linear boundaries, so that the corresponding approximation errors of boundary crossing probabilities converge to zero at a rate of O(1/n 2).


2021 ◽  
Vol 54 (2) ◽  
pp. 123-129
Author(s):  
James C. Fu ◽  
Winnie H. W. Fu

Increasing accuracy of the model prediction on business bankruptcy helps reduce substantial losses for owners, creditors, investors and workers, and, further, minimize an economic and social problem frequently. In this study, we propose a stochastic model of financial working capital and cashflow as a two-dimensional Brownian motion X(t) = (X1(t),X2(t)) on the business bankruptcy prediction. The probability of bankruptcy occurring in a time interval [0,T] is defined by the boundary crossing probability of the two-dimensional Brownian motion entering a predetermined threshold domain. Mathematically, we extend the result in Fu and Wu (2016) on the boundary crossing probability of a high dimensional Brownian motion to an unbounded convex hull. The proposed model is applied to a real data set of companies in US and the numerical results show the proposed method performs well.


2013 ◽  
Vol 50 (02) ◽  
pp. 419-429 ◽  
Author(s):  
Xiaonan Che ◽  
Angelos Dassios

Using martingale methods, we derive a set of theorems of boundary crossing probabilities for a Brownian motion with different kinds of stochastic boundaries, in particular compound Poisson process boundaries. We present both the numerical results and simulation experiments. The paper is motivated by limits on exposure of UK banks set by CHAPS. The central and participating banks are interested in the probability that the limits are exceeded. The problem can be reduced to the calculation of the boundary crossing probability from a Brownian motion with stochastic boundaries. Boundary crossing problems are also very popular in many fields of statistics.


2013 ◽  
Vol 50 (2) ◽  
pp. 419-429 ◽  
Author(s):  
Xiaonan Che ◽  
Angelos Dassios

Using martingale methods, we derive a set of theorems of boundary crossing probabilities for a Brownian motion with different kinds of stochastic boundaries, in particular compound Poisson process boundaries. We present both the numerical results and simulation experiments. The paper is motivated by limits on exposure of UK banks set by CHAPS. The central and participating banks are interested in the probability that the limits are exceeded. The problem can be reduced to the calculation of the boundary crossing probability from a Brownian motion with stochastic boundaries. Boundary crossing problems are also very popular in many fields of statistics.


Author(s):  
Noam Goldberg ◽  
Steffen Rebennack ◽  
Youngdae Kim ◽  
Vitaliy Krasko ◽  
Sven Leyffer

AbstractWe consider a nonconvex mixed-integer nonlinear programming (MINLP) model proposed by Goldberg et al. (Comput Optim Appl 58:523–541, 2014. 10.1007/s10589-014-9647-y) for piecewise linear function fitting. We show that this MINLP model is incomplete and can result in a piecewise linear curve that is not the graph of a function, because it misses a set of necessary constraints. We provide two counterexamples to illustrate this effect, and propose three alternative models that correct this behavior. We investigate the theoretical relationship between these models and evaluate their computational performance.


2011 ◽  
Vol 21 (03) ◽  
pp. 725-735 ◽  
Author(s):  
K. SRINIVASAN ◽  
I. RAJA MOHAMED ◽  
K. MURALI ◽  
M. LAKSHMANAN ◽  
SUDESHNA SINHA

A novel time delayed chaotic oscillator exhibiting mono- and double scroll complex chaotic attractors is designed. This circuit consists of only a few operational amplifiers and diodes and employs a threshold controller for flexibility. It efficiently implements a piecewise linear function. The control of piecewise linear function facilitates controlling the shape of the attractors. This is demonstrated by constructing the phase portraits of the attractors through numerical simulations and hardware experiments. Based on these studies, we find that this circuit can produce multi-scroll chaotic attractors by just introducing more number of threshold values.


Sign in / Sign up

Export Citation Format

Share Document