A complete convergence theorem for an epidemic model

1996 ◽  
Vol 33 (03) ◽  
pp. 741-748 ◽  
Author(s):  
Enrique Andjel ◽  
Rinaldo Schinazi

We use an interacting particle system on ℤ to model an epidemic. Each site of ℤ can be in either one of three states: empty, healthy or infected. An empty site x gets occupied by a healthy individual at a rate βn 1(x) where n 1(x) is the number of healthy nearest neighbors of x. A healthy individual at x gets infected at rate αn 2(x) where n 2(x) is the number of infected nearest neighbors of x. An infected individual dies at rate δ independently of everything else. We show that for all α, β and δ> 0 and all initial configurations, all the sites of a fixed finite set remain either all empty or all healthy after an almost surely finite time. Moreover, if the initial configuration has infinitely many healthy individuals then the process converges almost surely (in the sense described above) to the all healthy state. We also consider a model introduced by Durrett and Neuhauser where healthy individuals appear spontaneously at rate β > 0 and for which coexistence of 1's and 2's was proved in dimension 2 for some values of α and β. We prove that coexistence may occur in any dimension.

1996 ◽  
Vol 33 (3) ◽  
pp. 741-748 ◽  
Author(s):  
Enrique Andjel ◽  
Rinaldo Schinazi

We use an interacting particle system on ℤ to model an epidemic. Each site of ℤ can be in either one of three states: empty, healthy or infected. An empty site x gets occupied by a healthy individual at a rate βn1(x) where n1(x) is the number of healthy nearest neighbors of x. A healthy individual at x gets infected at rate αn2(x) where n2(x) is the number of infected nearest neighbors of x. An infected individual dies at rate δ independently of everything else. We show that for all α, β and δ> 0 and all initial configurations, all the sites of a fixed finite set remain either all empty or all healthy after an almost surely finite time. Moreover, if the initial configuration has infinitely many healthy individuals then the process converges almost surely (in the sense described above) to the all healthy state. We also consider a model introduced by Durrett and Neuhauser where healthy individuals appear spontaneously at rate β > 0 and for which coexistence of 1's and 2's was proved in dimension 2 for some values of α and β. We prove that coexistence may occur in any dimension.


2001 ◽  
Vol 38 (4) ◽  
pp. 1074-1078 ◽  
Author(s):  
Aidan Sudbury

The contact process is an interacting particle system which models a spatially restricted infection. In the basic contact process the infection can only spread to an uninfected neighbour, but the diffusive contact process allows an infected individual to move to an uninfected site. If the infection rate is too low, the process will die out. If the individual can move (or diffuse), the disease can spread with a lower infection rate. An idea of the relationship between these rates is obtained by obtaining rigorous lower bounds for the critical infection rate for various values of the diffusion rate. In this paper we also improve the lower bound for the critical infection rate for the basic contact process from 1.539 to 1.5517.


2001 ◽  
Vol 38 (04) ◽  
pp. 1074-1078 ◽  
Author(s):  
Aidan Sudbury

The contact process is an interacting particle system which models a spatially restricted infection. In the basic contact process the infection can only spread to an uninfected neighbour, but the diffusive contact process allows an infected individual to move to an uninfected site. If the infection rate is too low, the process will die out. If the individual can move (or diffuse), the disease can spread with a lower infection rate. An idea of the relationship between these rates is obtained by obtaining rigorous lower bounds for the critical infection rate for various values of the diffusion rate. In this paper we also improve the lower bound for the critical infection rate for the basic contact process from 1.539 to 1.5517.


2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Hui Huang ◽  
Jinniao Qiu

AbstractIn this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions $$d=2,3$$ d = 2 , 3 . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derived from an interacting particle system subject to both idiosyncratic and common noises. Both the unique existence of solutions to the stochastic KS equation and the mean-field limit result are addressed.


2021 ◽  
Vol 182 (2) ◽  
Author(s):  
Philip Kennerberg ◽  
Stanislav Volkov

AbstractWe study the behaviour of an interacting particle system, related to the Bak–Sneppen model and Jante’s law process defined in Kennerberg and Volkov (Adv Appl Probab 50:414–439, 2018). Let $$N\ge 3$$ N ≥ 3 vertices be placed on a circle, such that each vertex has exactly two neighbours. To each vertex assign a real number, called fitness (we use this term, as it is quite standard for Bak–Sneppen models). Now find the vertex which fitness deviates most from the average of the fitnesses of its two immediate neighbours (in case of a tie, draw uniformly among such vertices), and replace it by a random value drawn independently according to some distribution $$\zeta $$ ζ . We show that in case where $$\zeta $$ ζ is a finitely supported or continuous uniform distribution, all the fitnesses except one converge to the same value.


2020 ◽  
Vol 20 (06) ◽  
pp. 2040007
Author(s):  
Franco Flandoli ◽  
Marta Leocata ◽  
Cristiano Ricci

An interacting particle system made of diffusion processes with local interaction is considered and the macroscopic limit to a nonlinear PDE is investigated. Few rigorous results exists on this problem and in particular the explicit form of the nonlinearity is not known. This paper reviews this subject, some of the main ideas to get the limit nonlinear PDE and provides both heuristic and numerical informations on the precise form of the nonlinearity which are new with respect to the literature and coherent with the few known informations.


2000 ◽  
Vol 45 (4) ◽  
pp. 694-717 ◽  
Author(s):  
Claudio Landim ◽  
Claudio Landim ◽  
Claudio Landim ◽  
Claudio Landim ◽  
Mustapha Mourragui ◽  
...  

2000 ◽  
Vol 271 (1-2) ◽  
pp. 92-99 ◽  
Author(s):  
Kei-ichi Tainaka ◽  
Nariyuki Nakagiri

2020 ◽  
Vol 57 (3) ◽  
pp. 866-898
Author(s):  
Y. X. Mu ◽  
Y. Zhang

AbstractWe consider the threshold-one contact process, the threshold-one voter model and the threshold-one voter model with positive spontaneous death on homogeneous trees $\mathbb{T}_d$ , $d\ge 2$ . Mainly inspired by the corresponding arguments for the contact process, we prove that the complete convergence theorem holds for these three systems under strong survival. When the system survives weakly, complete convergence may also hold under certain transition and/or initial conditions.


2005 ◽  
Vol 42 (04) ◽  
pp. 1109-1119
Author(s):  
Nicolas Lanchier

In this paper, we introduce a generalization of the two-color multitype contact process intended to mimic a biological process called allelopathy. To be precise, we have two types of particle. Particles of each type give birth to particles of the same type, and die at rate 1. When a particle of type 1 dies, it gives way to a frozen site that blocks particles of type 2 for an exponentially distributed amount of time. Specifically, we investigate in detail the phase transitions and the duality properties of the interacting particle system.


Sign in / Sign up

Export Citation Format

Share Document