370. The reaction between milk protein and reducing sugar in the ‘dry’ state

1948 ◽  
Vol 15 (3) ◽  
pp. 369-376 ◽  
Author(s):  
C. H. Lea

‘Dry’, dialysed milk protein was stored for 6 months at 37° C. and 55% relative humidity alone and in the presence of small proportions of glucose, of high proportions of lactose and of sucrose, and of mixtures of these sugars.The reducing sugars combined with free amino-groups of the protein, apparently in a 1:1 ratio; sucrose did not. The reaction did not proceed to completion, probably owing to difficulty of access of the reactive groups to one another. Only when the sugar-amino reaction occurred did discoloration ensue.Glucose reacted more rapidly with the protein than did lactose, and the complex formed became discoloured and insoluble in both cold and hot water much more rapidly.Sucrose and lactose both greatly delayed the onset of glucose-induced insolubility, lactose being the more efficient of the two. They did not prevent discoloration.The protein alone became insoluble in cold but not in hot water after prolonged storage; but did not discolour. This change was prevented by sucrose. The behaviour of lactose was inconsistent, loss of solubility being accelerated in one experiment and retarded in another.

1982 ◽  
Vol 60 (10) ◽  
pp. 987-1000 ◽  
Author(s):  
H. Joseph Goren ◽  
C. Ronald Kahn

The effect of 10 bifunctional cross-linking agents and four monofunctional analogues was studied on isolated adipocytes. [125I]Insulin binding and degradation, basal and insulin-stimulated glucose oxidation, and 3-O-methyl glucose uptake were measured. Two cross-linkers, which possess succinimide ester residues (disuccinimidyl suberate and dithiobis(succinimidyl propionate)) and react selectively with amino groups, appeared to react relatively specifically with the insulin receptor. Both produced a slight stimulation of basal glucose transport and metabolism, a marked inhibition of insulin-stimulated glucose transport and metabolism, and a marked decrease in insulin binding. Pretreatment of cells with unlabelled insulin partially blocked the effect of disuccinimidyl suberate, and as has been previously shown, disuccinimidyl suberate cross-linked insulin to its receptor. A monofunctional analogue of these compounds was 100-fold less active in altering cellular metabolic activity. Bisimidates, such as dimethyl suberimidate, dimethyl adipimidate, and dimethyl dithiobispropionimidate, also react with free amino groups but are more hydrophilic. These agents produced similar effects on glucose oxidation as the succinimide esters, but had little or no effect on insulin binding. The effects of these agents are not blocked by insulin and they do not cross-link insulin to its receptor. Mixed bifunctional reagents containing either a succinimide ester or an imidate and a group which reacts with thiols produced effects similar to the cross-linkers containing two succinimide groups or bisimidates, respectively. The bifunctional arylating agents difluorodinitrobenzene and bis(fluoronitrophenyl)sulfone produce marked effects on insulin binding and glucose oxidation at micromolar concentrations, but the monofunctional analogue fluorodinitrobenzene is almost equally active suggesting that with these compounds chemical modifications and not cross-linking was important. With neither the mixed bifunctional reagents, nor the arylating agents, did insulin pretreatment alter the effect of cross-linker and none of these agents cross-linked [125I]insulin to its receptor. These data suggest that the insulin receptor possesses a free amino group in a hydrophobic environment in its active site. A reactive amino group in a hydrophilic environment as well as other reactive groups are also present in some component of the insulin receptor–effector complex. Chemical modification or cross-linking of these functional groups results in an inhibition or mimicking of insulin action. Further study will be required to identify the exact locus of these sites.


1994 ◽  
Vol 61 (3) ◽  
pp. 437-440 ◽  
Author(s):  
Yvette Bouton ◽  
Remy Grappin

Free amino groups produced during cheese ripening are used to indicate the extent of cheese proteolysis. Several studies have shown a high correlation between the level of free amino acids and the flavour of Gouda (Aston et al. 1983) or Comté (Grappin & Berdagué, 1989). Measurement of the level of free amino acids seems useful for the investigation of flavour chemistry in cheese (Lemieux et al. 1990). The determination of N fractions is often used to estimate the degree of proteolysis in cheese, but since this procedure is laborious and time consuming several attempts have been made to replace it by more rapid methods (Ardö & Meisel, 1991). Since its introduction by Satake et al. (1960), the 2,4,6-trinitrobenzenesulphonic acid (TNBS) method has been widely used for the determination of free amino groups. Because TNBS does not react with the imino groups of histidine and proline or the hydroxyl groups of tyrosine, serine or threonine, it has been accepted as a selective reagent for primary amino groups (Burger, 1974). Measurement of N by Kjeldahl in the phosphotungstic acid (PTA)–sulphuric acid extract (Gripon et al. 1975) estimates the N of free amino acids and low molecular mass peptides. The purpose of this study was to compare the TNBS and PTA-soluble N methods in order to find out whether the TNBS procedure can replace that of PTA-soluble N in the determination of a cheese proteolysis index.


2014 ◽  
Vol 881-883 ◽  
pp. 761-765 ◽  
Author(s):  
Hui Bo Luo ◽  
Da Di Wang ◽  
Yi Wang ◽  
Yong Wang ◽  
Cai Hong Wang

The continuous flow chemical analyzer was applied for the determination of the content of total acid, reducing sugars and free amino acids of Luzhou-flavor Daqu in the whole making process including fermentation and storage period. The result showed that the total acid, reducing sugars and free amino acids had a dramatic change in the period of Daqu fermentation and had a higher level with a small fluctuation in the prophase of Daqu storage. In the late phase of Daqu storage, the total acid and reducing sugars decreased considerably and tend to be stable finally, while the free amino acid was still maintained at a high level. The total acid and reducing sugar had a significant positive correlation (the correlation coefficient of total acid and reducing sugar content was 0.946,P<0.01), and both of them had no correlation with the content of free amino acid.


1963 ◽  
Vol 42 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Arthur I. Cohen ◽  
Edward H. Frieden

ABSTRACT A number of corticotrophin analogues have been prepared, some of which potentiate the biological activity of the untreated hormone in vitro. The free amino groups of corticotrophin appear to be essential not only for hormonal activity, but also for the interaction of the analogues with the tissue corticotrophin inactivating system which is assumed to account for the potentiating effect.


1955 ◽  
Vol 216 (2) ◽  
pp. 621-624
Author(s):  
Mary L. McFadden ◽  
Emil L. Smith

1955 ◽  
Vol 214 (1) ◽  
pp. 185-196 ◽  
Author(s):  
Mary L. McFadden ◽  
Emil L. Smith

1945 ◽  
Vol 39 (5) ◽  
pp. 507-515 ◽  
Author(s):  
F. Sanger
Keyword(s):  

1995 ◽  
Vol 62 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Jai-Jun Choung ◽  
David G. Chamberlain

SummaryThe effects of the form in which amino acids are presented to the abomasum on the milk production of dairy cows receiving a basal diet of grass silage and a barley-based supplement were examined in two experiments. Effects of abomasal infusions of sodium caseinate were compared with the effects of corresponding levels of either an enzymic hydrolysate of casein (Expt 1) or a corresponding mixture of free amino acids (FAA; Expt 2). In Expt 1, although the yield of protein in milk increased progressively with each level of infusion, the yields of protein were greater for the caseinate than for the hydrolysate. Again, in Expt 2, for milk protein yield, sodium caseinate was superior to FAA at the lower level of infusion. In both experiments, the hydrolysate and FAA treatments were associated with higher concentrations of fat in the milk. There were indications of differences in the pattern of secretion of glucagon between the caseinate and FAA treatments. It is concluded that the differences between treatments relate either to the kinetics of absorption of amino acid residues or to the action of bioactive peptides released during digestion of casein.


2004 ◽  
Vol 34 (4) ◽  
pp. 1219-1223 ◽  
Author(s):  
Luís Henrique de Barros Soares ◽  
Patrícia Melchionna Albuquerque ◽  
Francine Assmann ◽  
Marco Antônio Záchia Ayub

Three sources of food proteins were treated with microbial transglutaminase (EC 2.3.2.13) in order to assess changes in the physicochemical properties of reactivity, solubility, emulsification, and free amino groups of the formed polymers. Samples of lactic casein (LC), isolated soy protein (ISP), and hydrolysed animal protein (HAP), were incubated with the enzyme for one or two hours. LC and ISP showed a reduced solubility of 15% and 24% respectively, with HAP showing no alteration on solubility. Amino nitrogen content was 7%, 3% and 2% reduced for HAP, LC and ISP respectively. LC and ISP demonstrated lower emulsifying activity when they were enzymatically treated but the formed emulsions were stable, contrasting with HAP, which exhibited no changes in emulsifying properties.


Sign in / Sign up

Export Citation Format

Share Document