Three-dimensional instabilities of steady double-diffusive interleaving

2000 ◽  
Vol 418 ◽  
pp. 297-312 ◽  
Author(s):  
OLIVER S. KERR

A stratified body of fluid with compensating horizontal temperature and salinity gradients can undergo an interleaving instability which takes the form of almost horizontal intrusions. As the amplitude of these intrusions grows they can undergo secondary instabilities which eventually leads to the mixing of the fluid in the interior of the intrusions. A previous study of the secondary instabilities focused on two-dimensional disturbances. These corresponded to experimental observations of that time which all seemed to indicate that flows were indeed two-dimensional. Some more recent experiments have shown that the initial secondary instability can make the flow three-dimensional, with the secondary instabilities taking the form of rolls with their axes aligned with the direction of the flow in the intrusions. Here we present a three dimensional stability analysis of steady finite-amplitude intrusions and look at the circumstances which can lead to the three-dimensional instabilities being more likely to be observed.

1983 ◽  
Vol 137 ◽  
pp. 347-362 ◽  
Author(s):  
Judith Y. Holyer

In this paper we present a linear stability analysis for an unbounded, vertically stratified fluid which has compensating horizontal temperature and salinity gradients, so there is no horizontal density gradient. We obtain the most unstable perturbation for given linear horizontal and vertical gradients and calculate the growth rates, the vertical lengthscale of the intrusion and the slope of the intrusion to the horizontal. We show that the system is most unstable to two-dimensional disturbances and that, except for a small region in which the temperature stratification is unstable and the salinity stratification is stable, the most-unstable disturbance is non-oscillatory. We also obtain a solution to the fully nonlinear equations and calculate the fluxes of heat and salt. The nonlinear solution shows that alternating interfaces of salt-finger and diffusive interfaces will eventually appear on the intrusion when the vertical stratifications are both stable.


1992 ◽  
Vol 242 ◽  
pp. 99-116 ◽  
Author(s):  
Oliver S. Kerr

The stability of finite-amplitude double–diffusive interleaving driven by linear gradients of salinity and temperature is considered. We show that as the sinusoidal interleaving predicted by linear analysis grows to finite amplitude it is subject to instabilities centred along the lines of minimum vertical density gradient and maximum shear. These secondary instabilities could lead to the step-like density profiles observed in experiments. We show that these instabilities can occur for large Richardson numbers and hence are not driven by shear, but are driven, by double-diffusive effects.


1991 ◽  
Vol 227 ◽  
pp. 71-106 ◽  
Author(s):  
G. P. Klaassen ◽  
W. R. Peltier

We analyse the stability of horizontally periodic, two-dimensional, finite-amplitude Kelvin-Helmholtz billows with respect to infinitesimal three-dimensional perturbations having the same streamwise wavelength for several different levels of the initial density stratification. A complete analysis of the energy budget for this class of secondary instabilities establishes that the contribution to their growth from shear conversion of the basic-state kinetic energy is relatively insensitive to the strength of the stratification over the range of values considered, suggesting that dynamical shear instability constitutes the basic underlying mechanism. Indeed, during the initial stages of their growth, secondary instabilities derive their energy predominantly from shear conversion. However, for initial Richardson numbers between 0.065 and 0.13, the primary source of kinetic energy for secondary instabilities at the time the parent wave climaxes is in fact the conversion of potential energy by convective overturning in the cores of the individual billows. A comparison between the secondary instability properties of unstratified Kelvin-Helmholtz billows and Stuart vortices is made, as the latter have often been assumed to provide an adequate approximation to the former. Our analyses suggest that the Stuart vortex model has several shortcomings in this regard.


1985 ◽  
Vol 152 ◽  
pp. 113-123 ◽  
Author(s):  
N. Riahi

Finite-amplitude thermal convection in a horizontal layer with finite conducting boundaries is investigated. The nonlinear steady problem is solved by a perturbation technique, and the preferred mode of convection is determined by a stability analysis. Square cells are found to be the preferred form of convection in a semi-infinite three-dimensional region Ω in the (γb,γt, P)-space (γb and γt are the ratios of the thermal conductivities of the lower and upper boundaries to that of the fluid and P is the Prandtl number). Two-dimensional rolls are found to be the preferred convection pattern outside Ω. The dependence on γb, γt and P of the heat transported by convection is computed for the various solutions analysed in the paper.


1978 ◽  
Vol 87 (2) ◽  
pp. 385-394 ◽  
Author(s):  
Joe M. Straus ◽  
Gerald Schubert

On the basis of a stability analysis of finite amplitude, two-dimensional convection, we have determined the dimensions of boxes containing fluid-saturated porous material in which convection is necessarily unsteady or steady and three-dimensional. For certain box sizes, convective rolls are unstable at Rayleigh numbers Ra lower than 380, the value below which rolls are stable forms of convection between infinite parallel planes. For Ra = 100 and 200, it appears unlikely that there are any box dimensions for which there is not a stable (possibly multicellular) two-dimensional steady motion. At Ra = 340 and 400, boxes in which rolls are unstable have heights which range from one to five times their horizontal dimensions.


2013 ◽  
pp. 47-52 ◽  
Author(s):  
Chunxiang Wang ◽  
Željko Arbanas ◽  
Snježana Mihalić ◽  
Hideaki Marui

Author(s):  
Surya Sarat Chandra Congress ◽  
Prince Kumar ◽  
Ujwalkumar D. Patil ◽  
Tejo V. Bheemasetti ◽  
Anand J. Puppala

2000 ◽  
Vol 413 ◽  
pp. 1-47 ◽  
Author(s):  
C. P. CAULFIELD ◽  
W. R. PELTIER

We investigate the detailed nature of the ‘mixing transition’ through which turbulence may develop in both homogeneous and stratified free shear layers. Our focus is upon the fundamental role in transition, and in particular the associated ‘mixing’ (i.e. small-scale motions which lead to an irreversible increase in the total potential energy of the flow) that is played by streamwise vortex streaks, which develop once the primary and typically two-dimensional Kelvin–Helmholtz (KH) billow saturates at finite amplitude.Saturated KH billows are susceptible to a family of three-dimensional secondary instabilities. In homogeneous fluid, secondary stability analyses predict that the stream-wise vortex streaks originate through a ‘hyperbolic’ instability that is localized in the vorticity braids that develop between billow cores. In sufficiently strongly stratified fluid, the secondary instability mechanism is fundamentally different, and is associated with convective destabilization of the statically unstable sublayers that are created as the KH billows roll up.We test the validity of these theoretical predictions by performing a sequence of three-dimensional direct numerical simulations of shear layer evolution, with the flow Reynolds number (defined on the basis of shear layer half-depth and half the velocity difference) Re = 750, the Prandtl number of the fluid Pr = 1, and the minimum gradient Richardson number Ri(0) varying between 0 and 0.1. These simulations quantitatively verify the predictions of our stability analysis, both as to the spanwise wavelength and the spatial localization of the streamwise vortex streaks. We track the nonlinear amplification of these secondary coherent structures, and investigate the nature of the process which actually triggers mixing. Both in stratified and unstratified shear layers, the subsequent nonlinear amplification of the initially localized streamwise vortex streaks is driven by the vertical shear in the evolving mean flow. The two-dimensional flow associated with the primary KH billow plays an essentially catalytic role. Vortex stretching causes the streamwise vortices to extend beyond their initially localized regions, and leads eventually to a streamwise-aligned collision between the streamwise vortices that are initially associated with adjacent cores.It is through this collision of neighbouring streamwise vortex streaks that a final and violent finite-amplitude subcritical transition occurs in both stratified and unstratified shear layers, which drives the mixing process. In a stratified flow with appropriate initial characteristics, the irreversible small-scale mixing of the density which is triggered by this transition leads to the development of a third layer within the flow of relatively well-mixed fluid that is of an intermediate density, bounded by narrow regions of strong density gradient.


Sign in / Sign up

Export Citation Format

Share Document