Statistical structure of high-Reynolds-number turbulence close to the free surface of an open-channel flow

2003 ◽  
Vol 474 ◽  
pp. 355-378 ◽  
Author(s):  
ISABELLE CALMET ◽  
JACQUES MAGNAUDET

Statistical characteristics of turbulence in the near-surface region of a steady open- channel flow are examined using new data obtained in a high-Reynolds-number large-eddy simulation using a dynamic subgrid-scale model. These data, which correspond to a Reynolds number Re* = 1280 based on the total depth and shear velocity at the bottom wall, are systematically compared with those found in available direct numerical simulations in which Re* is typically one order of magnitude smaller. Emphasis is put on terms involved in the turbulent kinetic energy budget (dominated by dissipation and turbulent transport), and on the intercomponent transfer process by which energy is exchanged between the normal velocity component and the tangential ones. It is shown that the relative magnitude of the pressure–strain correlations depends directly on the anisotropy of the turbulence near the bottom of the surface-influenced layer, and that this anisotropy is a strongly decreasing function of Re*. This comparison also reveals the Re*-scaling laws of some of the statistical moments in the near-surface region, especially those involving vorticity fluctuations. Velocity variances, length scales and one-dimensional spectra are then compared with predictions of the rapid distortion theory elaborated by Hunt & Graham (1978) to predict the effect of the sudden insertion of a flat surface on a shearless turbulence. A very good agreement is found, both qualitatively and quantitatively, outside the thin viscous sublayer attached to the surface. As the present high-Reynolds-number statistics have been obtained after a significant number of turnover periods, this agreement strongly suggests that the validity of the Hunt & Graham theory is not restricted to short times after surface insertion.

2019 ◽  
Vol 876 ◽  
pp. 356-412
Author(s):  
Michael P. Kirkpatrick ◽  
N. Williamson ◽  
S. W. Armfield ◽  
V. Zecevic

Evolution of thermally stratified open channel flow after removal of a volumetric heat source is investigated using direct numerical simulation. The heat source models radiative heating from above and varies with height due to progressive absorption. After removal of the heat source the initial stable stratification breaks down and the channel approaches a fully mixed isothermal state. The initial state consists of three distinct regions: a near-wall region where stratification plays only a minor role, a central region where stratification has a significant effect on flow dynamics and a near-surface region where buoyancy effects dominate. We find that a state of local energetic equilibrium observed in the central region of the channel in the initial state persists until the late stages of the destratification process. In this region local turbulence parameters such as eddy diffusivity $k_{h}$ and flux Richardson number $R_{f}$ are found to be functions only of the Prandtl number $Pr$ and a mixed parameter ${\mathcal{Q}}$, which is equal to the ratio of the local buoyancy Reynolds number $Re_{b}$ and the friction Reynolds number $Re_{\unicode[STIX]{x1D70F}}$. Close to the top and bottom boundaries turbulence is also affected by $Re_{\unicode[STIX]{x1D70F}}$ and vertical position $z$. In the initial heated equilibrium state the laminar surface layer is stabilised by the heat source, which acts as a potential energy sink. Removal of the heat source allows Kelvin–Helmholtz-like shear instabilities to form that lead to a rapid transition to turbulence and significantly enhance the mixing process. The destratifying flow is found to be governed by bulk parameters $Re_{\unicode[STIX]{x1D70F}}$, $Pr$ and the friction Richardson number $Ri_{\unicode[STIX]{x1D70F}}$. The overall destratification rate ${\mathcal{D}}$ is found to be a function of $Ri_{\unicode[STIX]{x1D70F}}$ and $Pr$.


PAMM ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 489-490
Author(s):  
Davide Modesti ◽  
Matteo Bernardini ◽  
Sergio Pirozzoli

1995 ◽  
Vol 286 ◽  
pp. 1-23 ◽  
Author(s):  
Vadim Borue ◽  
Steven A. Orszag ◽  
Ilya Staroselsky

We report direct numerical simulations of incompressible unsteady open-channel flow. Two mechanisms of turbulence production are considered: shear at the bottom and externally imposed stress at the free surface. We concentrate upon the effects of mutual interaction of small-amplitude gravity waves with in-depth turbulence and statistical properties of the near-free-surface region. Extensions of our approach can be used to study turbulent mixing in the upper ocean and wind–sea interaction, and to provide diagnostics of bulk turbulence.


2019 ◽  
Vol 870 ◽  
pp. 460-491 ◽  
Author(s):  
Jérémy Basley ◽  
Laurent Perret ◽  
Romain Mathis

The influence of a cube-based canopy on coherent structures of the flow was investigated in a high Reynolds number boundary layer (thickness $\unicode[STIX]{x1D6FF}\sim 30\,000$ wall units). Wind tunnel experiments were conducted considering wall configurations that represent three idealised urban terrains. Stereoscopic particle image velocimetry was employed using a large field of view in a streamwise–spanwise plane ($0.55\unicode[STIX]{x1D6FF}\times 0.5\unicode[STIX]{x1D6FF}$) combined to two-point hot-wire measurements. The analysis of the flow within the inertial layer highlights the independence of its characteristics from the wall configuration. The population of coherent structures is in agreement with that of smooth-wall boundary layers, i.e. consisting of large- and very-large-scale motions, sweeps and ejections, as well as smaller-scale vortical structures. The characteristics of vortices appear to be independent of the roughness configuration while their spatial distribution is closely linked to large meandering motions of the boundary layer. The canopy geometry only significantly impacts the wall-normal exchanges within the roughness sublayer. Bi-dimensional spectral analysis demonstrates that wall-normal velocity fluctuations are constrained by the presence of the canopy for the densest investigated configurations. This threshold in plan area density above which large scales from the overlying boundary layer can penetrate the roughness sublayer is consistent with the change of the flow regime reported in the literature and constitutes a major difference with flows over vegetation canopies.


2016 ◽  
Vol 788 ◽  
pp. 614-639 ◽  
Author(s):  
Sergio Pirozzoli ◽  
Matteo Bernardini ◽  
Paolo Orlandi

We study passive scalars in turbulent plane channels at computationally high Reynolds number, thus allowing us to observe previously unnoticed effects. The mean scalar profiles are found to obey a generalized logarithmic law which includes a linear correction term in the whole lower half-channel, and they follow a universal parabolic defect profile in the core region. This is consistent with recent findings regarding the mean velocity profiles in channel flow. The scalar variances also exhibit a near universal parabolic distribution in the core flow and hints of a sizeable log layer, unlike the velocity variances. The energy spectra highlight the formation of large scalar-bearing eddies with size proportional to the channel height which are caused by a local production excess over dissipation, and which are clearly visible in the flow visualizations. Close correspondence of the momentum and scalar eddies is observed, with the main difference being that the latter tend to form sharper gradients, which translates into higher scalar dissipation. Another notable Reynolds number effect is the decreased correlation of the passive scalar field with the vertical velocity field, which is traced to the reduced effectiveness of ejection events.


Sign in / Sign up

Export Citation Format

Share Document