scholarly journals Recurrent motions within plane Couette turbulence

2007 ◽  
Vol 580 ◽  
pp. 339-358 ◽  
Author(s):  
D. VISWANATH

The phenomenon of bursting, in which streaks in turbulent boundary layers oscillate and then eject low-speed fluid away from the wall, has been studied experimentally, theoretically and computationally for more than 50 years because of its importance to the three-dimensional structure of turbulent boundary layers. Five new three-dimensional solutions of turbulent plane Couette flow are produced, one of which is periodic while the other four are relative periodic. Each of these five solutions demonstrates the breakup and re-formation of near-wall coherent structures. Four of our solutions are periodic, but with drifts in the streamwise direction. More surprisingly, two of our solutions are periodic, but with drifts in the spanwise direction, a possibility that does not seem to have been considered in the literature. It is argued that a considerable part of the streakiness observed experimentally in the near-wall region could be due to spanwise drifts that accompany the breakup and re-formation of coherent structures. A new periodic solution of plane Couette flow is also computed that could be related to transition to turbulence.The violent nature of the bursting phenomenon implies the need for good resolution in the computation of periodic and relative periodic solutions within turbulent shear flows. This computationally demanding requirement is addressed with a new algorithm for computing relative periodic solutions one of whose features is a combination of two well-known ideas – namely the Newton–Krylov iteration and the locally constrained optimal hook step. Each of the six solutions is accompanied by an error estimate.Dynamical principles are discussed that suggest that the bursting phenomenon, and more generally fluid turbulence, can be understood in terms of periodic and relative periodic solutions of the Navier–Stokes equation.

2014 ◽  
Vol 758 ◽  
pp. 1-4 ◽  
Author(s):  
Bruno Eckhardt

AbstractMuch of our understanding of the transition to turbulence in flows without a linear instability came with the discovery and characterization of fully three-dimensional solutions to the Navier–Stokes equation. The first examples in plane Couette flow were periodic in both spanwise and streamwise directions, and could explain the transitions in small domains only. The presence of localized turbulent spots in larger domains, the spatiotemporal decoherence on larger scales and the ability to trigger turbulence with pointwise perturbations require solutions that are localized in both directions, like the one presented by Brand & Gibson (J. Fluid Mech., vol. 750, 2014, R3). They describe a steady solution of the Navier–Stokes equations and characterize in unprecedented detail, including an analytic computation of its localization properties. The study opens up new ways to describe localized turbulent patches.


Author(s):  
Bruno Eckhardt ◽  
Holger Faisst ◽  
Armin Schmiegel ◽  
Tobias M Schneider

Plane Couette flow and pressure-driven pipe flow are two examples of flows where turbulence sets in while the laminar profile is still linearly stable. Experiments and numerical studies have shown that the transition has features compatible with the formation of a strange saddle rather than an attractor. In particular, the transition depends sensitively on initial conditions and the turbulent state is not persistent but has an exponential distribution of lifetimes. Embedded within the turbulent dynamics are coherent structures, which transiently show up in the temporal evolution of the turbulent flow. Here we summarize the evidence for this transition scenario in these two flows, with an emphasis on lifetime studies in the case of plane Couette flow and on the coherent structures in pipe flow.


1999 ◽  
Vol 394 ◽  
pp. 193-203 ◽  
Author(s):  
C. V. SEAL ◽  
C. R. SMITH

An experimental configuration has been found which allows detailed observation of three-dimensional vortex–vortex and associated vortex–surface interactions which appear similar to those observed in fully turbulent flow. Hydrogen bubble visualization illustrates a complicated intertwining, or braiding, of two initially co-rotating vortices. It is observed that the three-dimensional interactions of the braided vortices induces a pair of local surface-fluid eruptions reminiscent of the ‘bursting’ behaviour characteristic of the near-wall regeneration process of fully turbulent boundary layers.


1983 ◽  
Vol 105 (3) ◽  
pp. 251-256 ◽  
Author(s):  
F. J. Pierce ◽  
J. E. McAllister ◽  
M. H. Tennant

Eleven near-wall similarity models for three-dimensional turbulent boundary layers which have been identified in the literature are reviewed. Each model summary includes a brief review of its derivation, discusses limitations in the derivation, estimates the applicable y+ range, and compares differences among the models. This review of three-dimensional similarity models was developed as part of a larger study which tests the validity of ten of these different models by comparison with experimental data which includes the direct and simultaneous measurement of the local wall shear stress direction and magnitude in a three-dimensional turbulent flow. A direct force measurement of local wall shear stress is necessary to test the local wall shear-shear velocity relationship, τ0 = ρq*2, generally assumed in three-dimensional flows. This review is necessary to acquaint the reader with the similarities and differences among the models tested in companion papers since differences among some of the models are significant, particularly in the coordinate systems of the vector models.


Sign in / Sign up

Export Citation Format

Share Document